Special and complex-valued functions
Gnuplot 6 provides an expanded set of complex-valued functions and updated
versions of some functions that were present in earlier versions.
-  New: Riemann zeta function with complex domain and range.  See zeta.
-  Updated lower incomplete gamma function with improved domain and precision.
 Complex arguments accepted. See igamma.
-  New upper incomplete gamma function (real arguments only).
 See uigamma.
-  Updated incomplete beta function with improved domain and precision.
 See ibeta.
-  New function for the inverse incomplete gamma function.
 See invigamma.
-  New function for the inverse incomplete beta function.
 See invibeta.
-  New complex function LambertW(z,k) returns the kth branch of multivalued
 function W_k(z).
 Note that the older function lambertw(x) = real(LambertW( real(z), 0 )). See LambertW.
-  New complex function lnGamma(z).
 Note that existing function lgamma(x) = real(lnGamma(real(z)). See lnGamma.
-  Complex function conj(z) returns the complex conjugate of z.
-  Synchrotron function F(x), see SynchrotronF.
-  acosh(z) domain extended to cover negative real axis.
-  asin(z) asinh(z) improved precision for complex arguments.
-  Predefined variable I = sqrt(-1) = {0,1} for convenience.
 This is useful because gnuplot does not accept {a,b} as a valid complex constant but does accept (a + b*I) as a valid complex expression.
Additional special functions are supported if a suitable external
library is found at build time.  See special_functions.
-  Complex Bessel functions Iν(z), Jν(z), Kν(z), Yν(z) of order ν (real)
 with complex argument z. See BesselK.
-  Complex Hankel functions H1ν(z), H2ν(z) of order ν with complex z.
 See BesselH1.
-  Complex Airy functions Ai(z), Bi(z).
-  Complex exponential integral of order n. See expint.
-  Fresnel integrals C(x) and S(x). See FresnelC.
-  Function VP_fwhm(sigma,gamma) returns the full width at half maximum
 of the Voigt profile. See VP, VP_fwhm.