gnuplot 5.5

An Interactive Plotting Program

Thomas Williams & Colin Kelley
Version 5.5 organized by: Ethan A Merritt and many others

Major contributors (alphabetic order):
Christoph Bersch, Hans-Bernhard Broker,
John Campbell, Robert Cunningham,
David Denholm, Gershon Elber,

Roger Fearick, Carsten Grammes,

Lucas Hart, Lars Hecking, Péter Juhész,
Thomas Koenig, David Kotz, Ed Kubaitis,
Russell Lang, Timothée Lecomte,
Alexander Lehmann, Jérome Lodewyck,
Alexander Mai, Bastian Markisch,
Tatsuro Matsuoka, Ethan A Merritt, Petr Mikulik,
Daniel Sebald, Carsten Steger, Shigeharu Takeno,
Tom Tkacik, Jos Van der Woude,

James R. Van Zandt, Alex Woo, Johannes Zellner
Copyright (©) 1986 - 1993, 1998, 2004 Thomas Williams, Colin Kelley
Copyright (C) 2004 - 2022 various authors

Mailing list for comments: gnuplot-info@lists.sourceforge.net
Web site and issue trackers: http://sourceforge.net/projects/gnuplot

This manual was originally prepared by Dick Crawford.

Version 5.5 (development snapshot April 2022)

2 gnuplot 5.5 CONTENTS
Contents

I Gnuplot 22

Copyright 22

Introduction 22

Seeking-assistance 23

New features in this version 24

Special and complex-valued functions oL L 24

New plot style o e 25

Hulls, masks, and smoothing 25

New data formats e 25

New built-in functions and array operations L oo 25

Function blocks and scoped variables oL Lo 26

Named palettes L e 26

Program control flow L e 26

New terminals and terminal options Lo L L 27

Watchpoints o o o e 27

Week-date time support L 27

Other new features 27

Features introduced in version 5.4 L L e 28

Support for 64-bit integer arithmetic L oL o 28

Voxel grids o e 28

New plot styles and style options 29

New data pre-processing filters 29

New commands and command options L oL e 29

New terminals and terminal options Lo 30

Pixmaps as objects L e 30

Other new features e 30

Changes o 30

Features introduced in version 5.2 Lo 31

New plot styles and style options 31

New data pre-processing filters L 31

Polar mode improvements and extensionso e 31

Nonlinear coordinates systems L L L 31

New commands and command options L 31

New data type "array" e e e e e 32

New terminals and terminal options L Lo L 32

CONTENTS gnuplot 5.5 3

Other new features 32
Features introduced in version 5.0 Lo 32
Differences between versions 4 and 5 33
Deprecated syntax 34
Demos and Online Examples 35
Batch/Interactive Operation 35
Command line options L e e e e e 35
Examples o 36
Canvas size 36
Command-line-editing 36
Comments 37
Coordinates 37
Datastrings 38
Enhanced text mode 38
Escape sequenceso e e e e 40
Environment 40
Expressions 41
Complex values e e e 41
Constants e e e e e e 42
Functions e e e e 42
Integer conversion functions: int floor ceil round 45

Elliptic integrals oL o e 46
Complex Airy functions o o e 46
Complex Bessel functions 46

Expint e 47

Fresnel integrals FresnelC(x) and FresnelS(x) 47

Gamma 47

Tgamma L 47
Invigamma oL 48

Ibeta . . . o e e 48
Invibeta oL 48

LambertW e 48

4 gnuplot 5.5 CONTENTS

LnGamma oL e e 48
Random number generator L L Lo 48
Special functions with complex arguments 49
Synchrotron function L Lo 49
Time functions L 49
Time o e e 49

Timecolumn L e 49

Tm structure L 49

Tmoweek L 50

Weekdate iso L 50
Weekdatecde oL 50

Ulgamma oL e e e 51
Using specifier functions Lo e 51
Column e s 51

Columnhead L 51

Stringcolumno e 51

Valid o e 51

Value o o e 51
Counting and extracting wordso 52

Zeta . ..o e e e 52
Operators e 53
Unary oo e 53
Binary o e e 593
Ternary oL e e 54
Summation e e 55
Gnuplot-defined variables L L 55
User-defined variables and functions L L o 56
Arrays . ..o e 57
Array functions 57
Array indexing e 58
Fonts 58
Cairo (pdfcairo, pngcairo, epscairo, wxt terminals) Lo Lo L 58
Gd (png, gif, jpeg, sixel terminals) 58
Postscript (also encapsulated postscript *.eps) oo 59
Glossary 59
Inline data and datablocks 60

Iteration 60

CONTENTS gnuplot 5.5

Linetypes, colors, and styles

ColorsSpec e
Background color.
Linecolor variable o
Palette o .
Rgbcolor variable oo o

Dashtype e

Linestyles vs linetypes L

Special linetypes

Layers

Mouse input

Bind space

Mouse variables e

Persist

Plotting

Plugins

Scope of variables

Start-up (initialization)

String constants, string variables, and string functions
Substringso
String operators Lo
String functionso

String encoding Lo

Substitution and Command line macros

Substitution of system commands in backquotes

Substitution of string variables as macros

String variables, macros, and command line substitution

Syntax

Quote marks L e e e

Time/Date data

Watchpoints

61
62
62
63
63
63
64
64
65

65

66
66
67
67

68

68

68

69

69

70
70
70
70
71

71
71
71
72

73
73

74

75

gnuplot 5.5 CONTENTS

Watch mouse

Watch labels

IT Plotting styles
Arrows

Bee swarm plots
Boxerrorbars

Boxes

2D boxes
3D boxes

Boxplot

Boxxyerror

Candlesticks

Circles

Ellipses

Dots

Filledcurves

Fill properties

Financebars

Fillsteps

Fsteps

Histeps

Heatmaps

Histograms

Newhistogram
Automated iteration over multiple columns

Histogram color assignments L e 91

Image

7

77

77

78

78

..................................... 78
..................................... 79

80

81

81

82

83

84

84

..................................... 85

85

86

86

86

87

87

..................................... 90

............................... 91

91

CONTENTS gnuplot 5.5 7

Transparency oL e e e e e e e e 92

Image pixels L e 92
Impulses 93
Labels 93
Lines 94
Linespoints 94
Masking 95
Parallelaxes 95
Polar plots 96
Points 96
Polygons 97
Rgbalpha 98
Rgbimage 98
Spiderplot 98

Newspiderplot oL e e 98
Steps 98
Surface 99
Vectors 99
Xerrorbars 100
Xyerrorbars 100
Xerrorlines 100
Xyerrorlines 101
Yerrorbars 101
Yerrorlines 101
3D plots 103

Surface plots oL e 103

8 gnuplot 5.5 CONTENTS
2D projection (set view map)o e 103
PM3D plots o o e 103

Fence plots 104

Isosurface 104

Zerrorfill 104

Animation 105

IIT Commands 106

Break 106

Cd 106

Call 106
Argvl] . o e 107
Example o L e e 107
Old-style e 108

Clear 108

Continue 108

Do 109

Evaluate 109

Exit 109

Fit 110
Adjustable parameters e e e e e e 112
Short introduction e 113
Error estimates 113

Statistical overview e 114

Practical guidelines L 114
Control s 115
Error recovery L 116
Multi-branch 116
Starting values e e e e 116
TIPS . o o e e e e 117

Function blocks

CONTENTS gnuplot 5.5 9

Help

History

If

Import

Load

Local

Lower

Pause

120

120

120
... 121

121

121

122

122

123

123

Pause mouse close 124

Plot

Array ..o 126

PHE o oo e 128

Flipx, flipy, flipz 128
Origin 128
Center e 129
Rotate o e 129
Perpendicular L 129

10

gnuplot 5.5 CONTENTS

Columnheaders L 131
Csvfiles o 131
Every . . oo 131
Example datafileo e 132
Filters o o e e 132
Bins . . . e 133
Convexhull 0 133
Mask e 134
ZSOTt . o o o e e e 134
Index . . . o e 134
SKID « o o e 135
Smooth L 135
Acsplines oL 135
Bezier 136
Bins . . . e 136
Convexhull e 136
Csplines 136
Mesplines oL e 136
Path . . . o e 136
Sbezier e 137
Unique o e 137
Unwrap o e e e e 137
Frequency oL 137
Fnormal e 137
Cumulative L 137
Cnormal L 137
Kdensity 138
Special-filenames Lo 138
Piped-data e 139
USING . . . o o e 139
Format e 140
Using_examples e 140
Pseudocolumnso L 141
Arrays . .o e e 142
Key . o o e 142
Xticlabels o 142
X2ticlabels 142
Yticlabelso 142
Y2ticlabels 142

Zticlabels . . .o e 142

CONTENTS gnuplot 5.5 11
Cbticlabels e e 142

Volatile e e 143
Functions o o e 143
Parametric L e e 143
Ranges o L e 143
Sampling e e e e 144

1D sampling (x or t axiS)o e 144

2D sampling (wand v axes)o 145

For loops in plot command L e 145
Title . . . o e 146
With . . o 147
Print 150
Printerr 150
Pwd 150
Quit 150
Raise 150
Refresh 151
Replot 151
Reread 151
Reset 152
Return 152
Save 152
Set-show 153
Angles . . . e 153
ATTOW . . o o e e e e 154
Autoscale L e e e 155
Noextend o e 156
Examples oL 156

Polar mode e e 157

Bindo e 157
Bmargin L 157
Border e 157

12

gnuplot 5.5 CONTENTS

Boxwidth o e 159
Boxdepth e 159
Color . . . e 159
Colormap 159
ColorSeqUence L L e 160
Clabel . . . o o e e 160
CUD .« o o 160
Cutrlabel o e 161
Cntrparalil e e 161
Examples oL 163
Color box . . . o L e 164
Colornames e e e e e 164
Contour e 165
Cornerpoles 166
Dashtype e 166
Datafile e e 166
Set datafile columnheaders o 166

Set datafile fortrano 166

Set datafile nofpetrap 166

Set datafile missing L 166

Set datafile separator L e e e e 168

Set datafile commentschars 168

Set datafile binary 169
Decimalsigno e e 169
Derid3d 170
Dummy 171
Encoding e 171
Errorbarso e e 172
Fit e e 172
Fontpath e 174
Format e 174
Gprintf 175
Format specifiers 175
Time/date specifiers 176
Examples 177

Grid e 177
Hidden3d o e 178
Historysize e 180
History o o e 180

Isosamples L 180

CONTENTS gnuplot 5.5 13

Isosurface e 180
Isotropic o e e 181
Jitter . oo e 181
Key . o o e 181
3D key . oo e s 182
Key examples e 182
Extra key entries oL 184
Key autotitle e 184
Key layout 184
Key placement 185
Key offset o o 186
Key samples e e 186
Multiple keys o L e 186
Label . . . o e 187
Examples e 188
Hypertext o o o 189
Linetype o o o e e e 190
Link . . o o e 190
Lmargin oL 191
Loadpath e 191
Locale o e 191
Logscale o e e e 191
MaCTos o o o e e e e e 192
Mapping o e e e 192
Margin o e 193
MICro . . o o o e 193
MiInussign e e 193
Monochrome e e e e e e 194
MoUSe . . . o o e e e e 194
Doubleclick oL 195
Format e 195
Mouseformat L 195
Scrolling e 196
XIT MOUSE « v v v v o v e e e e e e e e e e e e e e 196
/70703 & 3 196
MEEICS « . o o e 196
Multiplot o e 197
MX26ICS .« « o o o e e e e 198
MXEICS . . o v o e e e e 199

Mxtics time e e 199

14 gnuplot 5.5 CONTENTS
My261CS . . o o o e e e e 200
Mytics o o 200
MzZEICS . . o o o e e e 200
Nonlinear e e e 200
Object . . . o 201

Rectangle oL 202
Ellipse o o 202
Circle e 203
Polygono e e 203
Depthorder e 203

Offsets . . . o o o e 204
Origin o e e 204
Output . . . o e e 204
Overflow e 205
Float . . . o e 205

NalN . . e 205
Undefined L e 206
Affected operations 206
Palette o o e 206
Rgbformulae oL e 207
Defined L e 207
Functions e 208
GIay . o o oo e e e 209
Cubehelix L 209
Virldis o 209
Colormap 209

File . . . o e 209
Gamma COTTeCtION o o i e e e e e 210
Maxcolors oL e e e e 211
Color model L 211
Postscript L e e 211
Parametric L e 211
Paxis . . . o . e 212
Pixmap o e e 212
Pixmap from colormap 213
Pm3d . . . e 213
Implicit e 214
Algorithm o L e 214
Lighting o 215

Position o e e 215

CONTENTS gnuplot 5.5 15

Scanorder e e e 215
CHPPING - . . . o o o o e 216
Color_assignment L L e e e 216
Corners2color e e e 217
Border. e s 217
Fillcolor o e 217
Interpolate 218
Deprecated_options 218
Pointintervalbox L e 218
Pointsize L L e 218
Polar e e e 218
Polar grid o e 219
Print . . . o e 220
Psdir o e 220
Raxis o e 220
Rgbmax o e e 220
Rlabel e e 221
Rmargin oo 221
Rrange o e 221
Rtics . . . o e e 221
Samples L e 221
SIZEe . . e e 222
Spiderplot e e 222
Style . . o o e 223
Set style arrow Lo 223
Boxplot 224

Set style data L 225

Set style fill o L 226

Set style fill border 226

Set style fill transparent Lo 226

Set style function oL 227

Set style increment Lo 227

Set style line L e 227

Set style circle L 229

Set style rectangle 229

Set style ellipse L L 229

Set style parallelaxis 230

Set style spiderplot 230

Set style textbox Lo e e 230

Set style watchpoint L 230

16

gnuplot 5.5 CONTENTS

Surface e 231
Table e 231

Plot with table 232
Terminal o e e e 232
Termoption L e e e s 233
Theta o e 233
TiCS . o o o s e 233
Ticslevel o L o e 234
Ticscale e 234
Timestamp L e e 234
Timefmt L o e 235
Title . . . o o e e 236
Tmargin oL 236
Trange L 236
THICS . o o o e e 237
Urange o o o e e e 237
Version e e 237
Vgrid . . . o 237
VIEW . . o 238

Azimuth 238

Equal_axes o e e 238

Projection oL 239
Vrange o . e e e 239
VXTaNge . . . o o o e e e e e e 239
Vyrange L 239
Vzrange 239
Walls . . . o e 239
Watchpoints o L o e 240
X2data . ..o e e e e 240
X2dtics . . .o 240
X2label . . .o 240
X2mbICS . . . L o e e e e 241
X2rangeo e e 241
K2EICS © v o e e 241
X27€T0AXIS .« v o e e e e e e e e e e 241
Xdata e 241

Time e 241
XABICS . . o o e e 242
Xlabel . . o e e 242

CONTENTS gnuplot 5.5 17

XTANGE . . . o o v e e 243
Examples 244
Extend e 245

KBICS .« o v o e e e 245
XEICS SETies . . . o o e e e s 246
Xtics List . . o o e 247
Xtics timedata oL e e 248
Geographic L e e 248
Xtics logscale L 249
Xtics rangelimitedo 249

Xyplane e e e 249

XZETOAxisS . . v v v e e e e e 250

Y2datao 250

Y2dtics o e 250

Y2label . . o e e 250

Y2mMEIics . . . o o e e e e 250

Y2rangeo o e e e e 250

Y2bICS . . o o e e e 250

Y2ZErOaxiS . . . o v v i e e e e e e e e e e e e e e e 250

Ydata e 250

YAEics . . . o e 251

Ylabel . . o e 251

Ymbics . . . o o e e e e e 251

Yrange oo e e e e 251

YHICS .« o o o o e e 251

YZeroaxiso e e e e e e 251

Zdata e 251

ZABICS . . . 251

Z7Z€TOAXIS . .« . o .o e e e e e 251

Chdata e e 251

Chdtics o e 252

ZETO « o o o i e e 252

ZETOAXIS . o v v i e e 252

Zlabel . .o e e 252

ZmbiCS . . . oL e e e e 252

ZTANGE . . .« v oo e e e e e 253

ZEICS © o o o o e e e e 253

Chlabel 253

Chmtics o e 253

18 gnuplot 5.5 CONTENTS

Chtics . . . o o e 253
Shell 253
Show 254

Show colornames i e e e e e e e e e e e e 254

Show functions L e e 254

Show palette e 254

Show palette gradient 254
Show palette fit2rgbformulae oL 254
Show palette palette e 255
Show palette rgbformulae 255

Show plot o e e 255

Show variables L e e 255
Splot 255

Data-file e 256

Matrix . . . e e e e 257
Uniform matrix 257
Nonuniform matrix e e e e e 258
Sparse matrixo e e e 258
Every . . . o 259
Exampleso 259

Example datafile 260

Grid data e e e 260

Splot surfaces oL e e e e 261

Voxel-grid o o e 261
Stats (Statistical Summary) 261

Name e 263

Test for existence of a file 263

Voxelgrid o e e 264
System 264
Test 264
Toggle 264
Undefine 265
Unset 265

Linetype o o o e e 265

CONTENTS gnuplot 5.5 19
Monochrome L e 265
Output o e 265
Terminal L e e e 266

Update 266

Vclear 266

VHill 266

While 267

IV Terminal types 268

Complete list of terminals 268
Aifm . oL e 268
Aqua. . o o e 268
Be e 268

Command-line options 269
Monochrome options L 269
COlOT TESOUTCES & .« . v v v v vt e e e e e e e e e e e e 269
Grayscale TeSOUTCES o v v vt e e e e e e 270
Lineresources oL e e e e 270
Block e e 271
Caca e e 272
Caca limitations and bugs 273
Cairolatex e 273
Canvas e e 275
Cgim . . o e 276
Cgm font e e 277
Cgm fontsize e 278
Cgm linewidth 0 oL 278
Cgmrotate L e e 278
Cgmsolid L e 278
Cgm SIZE . . . o e e e e e 278
Cgm width oL e 279
Cgm nofontlist L e 279
Context o 279
Requirements Lo 281
Calling gnuplot from ConTeXt o 281
Debug e 281

20 gnuplot 5.5 CONTENTS
Domterm o e e 281
Animate oL e 281
Dumb . . e 282
DxXf . e 283
Emf o 283
Epscairo L o e e 283
Epslatex o o o e 284
Epson_180dpi e 287
Fig . o e 287
Ggl . . o e 288
Gif . o 288
Animate L 289
Optimize e 289

Fonts . . . o e 290

GDIC . o o o e 290
Grass . . o o v e 291
HP terminals oL e 291
Hpgl . o e 291
Imagen 291
Jpeg . e 292
Latex . . o . e e 292
Linux console L e e e 292
Lua . . o 293
Luatikz o e e 293

Pbm . . o e 295
Pclb o e 296
Pdfcairo e 297
Pict2e . . . e 298
Pm . o e e 298
Png . 299
Exampleso 300
Pngeairo oL 300
Postscript o o e e 301
Editing postscript L 303
Postscript fontfile 303
Postscript prologue oL 304
Postscript adobeglyphnames Lo 305
Pslatex and pstex L e 305
Pstricks L e 307

CONTENTS gnuplot 5.5 21
Regis e 309
Sixelgd o 309
SVE o o e 310
SVEA .« o v e e e e 310
Tek40 . . . o e e 311
Tek410x . . . o o o e e e 311
Texdraw L e e 311
Tgif . e s e 312
Tikz . . o e 313
Tkeanvas e e 313
Webp . . e e 315
Windows L e e 316

Graph-menu e 317
Printing o L e 317
Text-menu e e e 318
Wegnuplot.mnu 318
Wenuplot.ini oL 318
WXt o e 319
XL o 321
X1l fonts . . . o o e 322
Command-line_options 323
COlOT TESOUTCES © .« « v v v v vt e e e e e e e e e e e e e e 324
Grayscale TeSOUTCES v v vt e e e 324
Lineresources oL e e e 325
X11 pm3d.resourceso e e e e e 325
X11 other_resources L e 326
XIDb oo e e 326

V Bugs 327

Known limitations 327

External libraries 327

VI Index 327

22 gnuplot 5.5

Part 1

Gnuplot

Copyright
Copyright (C) 1986 - 1993, 1998, 2004, 2007 Thomas Williams, Colin Kelley

Permission to use, copy, and distribute this software and its documentation for any purpose with or without
fee is hereby granted, provided that the above copyright notice appear in all copies and that both that
copyright notice and this permission notice appear in supporting documentation.

Permission to modify the software is granted, but not the right to distribute the complete modified source
code. Modifications are to be distributed as patches to the released version. Permission to distribute binaries
produced by compiling modified sources is granted, provided you

1. distribute the corresponding source modifications from the

released version in the form of a patch file along with the binaries,
2. add special version identification to distinguish your version

in addition to the base release version number,
3. provide your name and address as the primary contact for the

support of your modified version, and
4. retain our contact information in regard to use of the base software.

Permission to distribute the released version of the source code along with corresponding source modifications
in the form of a patch file is granted with same provisions 2 through 4 for binary distributions.

This software is provided "as is" without express or implied warranty to the extent permitted by applicable
law.

AUTHORS
Original Software:
Thomas Williams, Colin Kelley.
Gnuplot 2.0 additions:
Russell Lang, Dave Kotz, John Campbell.
Gnuplot 3.0 additions:
Gershon Elber and many others.
Gnuplot 4.0 and 5.0 additions:
See list of contributors at head of this document.

Introduction

Gnuplot is a portable command-line driven graphing utility for Linux, OS/2, MS Windows, OSX, VMS,
and many other platforms. The source code is copyrighted but freely distributed (i.e., you don’t have to
pay for it). It was originally created to allow scientists and students to visualize mathematical functions and
data interactively, but has grown to support many non-interactive uses such as web scripting. It is also used
as a plotting engine by third-party applications like Octave. Gnuplot has been supported and under active
development since 1986.

Gnuplot supports many types of plots in either 2D and 3D. It can draw using lines, points, boxes, contours,
vector fields, surfaces, and various associated text. It also supports various specialized plot types.

Gnuplot supports many different types of output: interactive screen terminals (with mouse and hotkey
input), direct output to pen plotters or modern printers, and output to many file formats (eps, emf, fig, jpeg,
LaTeX, pdf, png, postscript, ...). Gnuplot is easily extensible to include new output modes. Recent additions

gnuplot 5.5 23

include interactive terminals based on wxWidgets (usable on multiple platforms), and Qt. Mouseable plots
embedded in web pages can be generated using the svg or HTML5 canvas terminal drivers.

The command language of gnuplot is case sensitive, i.e. commands and function names written in lowercase
are not the same as those written in capitals. All command names may be abbreviated as long as the
abbreviation is not ambiguous. Any number of commands may appear on a line, separated by semicolons
(;). Strings may be set off by either single or double quotes, although there are some subtle differences. See
syntax (p. 73) and quotes (p. 73) for more details. Example:

set title "My First Plot"; plot ’data’; print "all done!"

Commands may extend over several input lines by ending each line but the last with a backslash (\). The
backslash must be the last character on each line. The effect is as if the backslash and newline were not there.
That is, no white space is implied, nor is a comment terminated. Therefore, commenting out a continued line
comments out the entire command (see comments (p. 37)). But note that if an error occurs somewhere
on a multi-line command, the parser may not be able to locate precisely where the error is and in that case
will not necessarily point to the correct line.

In this document, curly braces ({}) denote optional arguments and a vertical bar (|) separates mutually
exclusive choices. Gnuplot keywords or help topics are indicated by backquotes or boldface (where
available). Angle brackets (<>) are used to mark replaceable tokens. In many cases, a default value of the
token will be taken for optional arguments if the token is omitted, but these cases are not always denoted
with braces around the angle brackets.

For built-in help on any topic, type help followed by the name of the topic or help ? to get a menu of
available topics.

A large set of demo plots is available on the web page http://www.gnuplot.info/demo/

When run from command line, gnuplot is invoked using the syntax
gnuplot {OPTIONS} filel file2 ...

where filel, file2, etc. are input file as in the load command. On X11-based systems, you can use
gnuplot {X110PTIONS} {OPTIONS} filel file2 ...

see your X11 documentation and x11 (p. 321) in this document.

Options interpreted by gnuplot may come anywhere on the line. Files are executed in the order specified, as
are commands supplied by the -e option, for example

gnuplot filel.in -e "reset" file2.in

The special filename "-" is used to force reading from stdin. Gnuplot exits after the last file is processed. If
no load files are named, Gnuplot takes interactive input from stdin. See help batch/interactive (p. 35)
for more details. The options specific to gnuplot can be listed by typing

gnuplot --help

See command-line-options (p. 35) for more details.

In sessions with an interactive plot window you can hit ’h” anywhere on the plot for help about hotkeys and
mousing features. Section seeking-assistance will help you to find further information, help and FAQ.

Seeking-assistance

The canonical gnuplot home page can be found at http://www.gnuplot.info

Before seeking help, please check file FAQ.pdf or the above website for a FAQ (Frequently Asked
Questions) list.

Another resource for help with specific plotting problems (not bugs) is
https://stackoverflow.com/questions/tagged/gnuplot

http://www.gnuplot.info/demo/
http://www.gnuplot.info
http://www.gnuplot.info/faq/
http://www.gnuplot.info/faq/

24 gnuplot 5.5

Bug reports and feature requests should be uploaded to the trackers at

https://sourceforge.net/p/gnuplot/_list/tickets

Please check previous reports to see if the bug you want to report has already been fixed in a newer version.

When reporting a bug or posting a question, please include full details of the gnuplot version, the terminal
type, and the operating system. A short self-contained script demonstrating the problem is very helpful.

Instructions for subscribing to gnuplot mailing lists may be found via the gnuplot development website
http://sourceforge.net/projects/gnuplot

Please note that before you write to any of the gnuplot mailing lists you must first subscribe to the list. This
helps reduce the amount of spam.

The address for mailing to list members is:

gnuplot-info@lists.sourceforge.net

A mailing list for those interested in the development version of gnuplot is:

gnuplot-beta@lists.sourceforge.net

New features in this version

Version 5.5 is the current development version, built from a snapshot of the source files in the master branch
of the git repository. New features introduced here will generally not appear in a supported release until
version 5.6. Details may change before that.

For more information about optional features built into the particular copy of gnuplot you are running, type
show version long.

Special and complex-valued functions

This version of gnuplot provides a larger set of complex-valued functions and updated versions of some
functions that were present in earlier versions.

e New: Riemann zeta function with complex domain and range. See zeta (p. 52).

e Updated lower incomplete gamma function with improved domain and precision. Complex arguments
accepted. See igamma (p. 47).

e New upper incomplete gamma function (real arguments only). See uigamma (p. 51).

e Updated incomplete beta function with improved domain and precision. See ibeta (p. 48).
e New function for the inverse incomplete gamma function. See invigamma (p. 48).

e New function for the inverse incomplete beta function. See invibeta (p. 48).

e New complex function LambertW(zk) returns the kth branch of multivalued function W_k(z). Note
that the older function lambertw(x) = real(LambertW(real(z), 0)). See LambertW (p. 48).

e New complex function InGamma(z). Note that existing function lgamma(x) = real(InGamma(real(z)).
See InGamma (p. 48).

e Complex function conj(z) returns the complex conjugate of z.
e Synchrotron function F(x), see SynchrotronF (p. 49).

e acosh(z) domain extended to cover negative real axis.

e asin(z) asinh(z) improved precision for complex arguments.

e Predefined variable I = sqrt(-1) = {0,1} for convenience. This is useful because gnuplot does not accept
{a,b} as a valid complex constant but does accept (a + b*I) as a valid complex expression.

http://sourceforge.net/projects/gnuplot

gnuplot 5.5 25

Additional special functions are supported if a suitable external library is found at build time. See spe-
cial_functions (p. 49).

e Complex Bessel functions Iv(z), Jv(z), Kv(z), Yv(z) of order v (real) with complex argument z. See
BesselK (p. 47).

Complex Hankel functions Hlv(z), H2v(z) of order v with complex z. See BesselH1 (p. 47).

Complex Airy functions Ai(z), Bi(z).

Complex exponential integral of order n. See expint (p. 47).
Fresnel integrals C(x) and S(x). See FresnelC (p. 47).

Function VP _fwhm(sigma,gamma) returns the full width at half maximum of the Voigt profile. See
VP (p. 44), VP_fwhm (p. 44).

New plot style

e The plot style with surface works in 2D polar coordinates to produce a solid-fill gridded representation
of the plane, colored by a weighted contribution an arbitrary set of input points. This is analagous
to the use of dgrid3d and style with pm3d to produce a 3D gridded surface. See set polar grid
(p- 219) and polar heatmap (p. 96).

Hulls, masks, and smoothing

e A cluster of 2D points can be replaced by its bounding polygon using the new filter convexhull. A
path-smoothed bounding curve is produced by smooth convexhull. See convexhull (p. 133).

e A convex hull or other polygon can be used as a mask to display only selected portions of a pm3d
surface or an image plot. See new plot style with mask (p. 95) (defines a mask) and keyword mask
(applies the mask to a subsequent plot component).

e curve smoothing using along-path cubic splines suitable for closed curves or for 2D curves that are not
monotonic on x. See smooth path (p. 136). This allows smoothing of hulls and masks.

e cubic spline smoothing of 3D lines. See splot smooth csplines (p. 136)
e Smoothing options apply to plotting with filledcurves (p. 84) {above|below|between}.
e New keyword period for smoothing periodic data. See smooth kdensity (p. 138).

New data formats

e The sparse matrix=(cols,rows) option to plot and splot generates a uniform pixel grid into which
individual pixel values may be loaded in any order. This is useful for plotting heat maps from incomplete
data. See sparse (p. 258).

e During input of non-uniform matrix data, column(0) now returns the linear ordering of matrix elements.
Le. for element A[i,j] in an MxN matrix A, column(0)/M gives the row index i, and column(0)%M
gives the column index j.

New built-in functions and array operations

e palette(z) returns the current RGB palette color mapping z into cbrange.
e rgbcolor("name") returns the 32bit ARGB value for a named color.

e index(Array, element) returns the first index i for which Array[i] is equal to element. See arrays
(p. 57).

26

gnuplot 5.5

User-defined functions allow an array as a parameter. Example: dot(A,B) = sum [i=1:|A|] A[i]*B][i]

Array slices are generated by appending a range to the array name. Array[n] is single element. Ar-
ray[n:n+5] is a six element slice of the original array. See arrays (p. 57), slice (p. 57).

split("string", "separator") unpacks the fields in a string into an array of strings. See split (p. 52).

join(array, "separator") is the complement to split. It concatenates the elements of a string array
into a single string with field separators. See join (p. 52).

stats <non-existent file> yields a testable value. See stats test (p. 263).

stats $vgrid finds min/max/mean/stddev of voxels in grid

Function blocks and scoped variables

This version of gnuplot introduces a mechanism for invoking a block of standard gnuplot commands as a
callable function. A function block can accept from 0 to 9 parameters and returns a value. Function blocks
can be used to calculate and assign a new value to a variable, to combine with other functions and operators,
or to perform a repetitive task preparing data. There are three components to this mechanism. See local
(p. 122), scope (p. 69), function blocks (p. 118), return (p. 152).

e The local qualifier allows optional declaration of a variable or array whose scope is limited to the

duration of execution of the program unit in which it is found. These units currently include execution
of a load or call statement, function block evaluation, and the code block in curly brackets following
an if, else, do for, or while statement. If the name of a local variable duplicates the name of a global
variable, the global variable is shadowed until exit from the local scope.

The function command declares a named function block (effectively an array of strings) containing
gnuplot commands. When the function block is invoked, commands are executely successively until
the end of the block or until a return command is encountered.

The return <expression> command terminates execution of a function block. The result of evaluat-
ing <expression> is returned as the value of the function. Anywhere outside a function block return
acts like exit.

Please see function_block.dem for an example of using this mechanism to define and plot a non-trivial
function that is too complicated for a simple one-line definition f(x) =

Named palettes

The current palette can be saved to a named colormap for future use. See set colormap (p. 159).

pm3d and image plots can specify a previously saved palette by name. This permits the use of multiple
palettes in a single plot command. See colorspec palette (p. 63).

Named palette colormaps can be manipulated as arrays of 32-bit ARGB color values. This permits
addition of alpha-channel values or other modifications not easily specified in a set palette command.

There is a new predefined color scheme set palette viridis.

Palettes read from a file or datablock (set palette file) may be specified either using fractional color
components or 24-bit packed RGB values.

Program control flow

e Support XDG base directory for gnuplotrc configuration preferences. The program reads initial com-

mands from $HOME/ .config/gnuplot/gnuplotre if this file is found. See environment (p. 40).

gnuplot 5.5 27

e Exception handling for the "fit" command. Control always returns to the next line of input, even in
the case of fit errors. On return, FIT_ERROR is non-zero if an error occurred. This allows scripted
recovery from a bad fit. See fit error_recovery (p. 116).

e The load and call commands can input commands from a datablock as an alternative to reading them
from a file.

e New syntax if ... else if ... else ...

New terminals and terminal options

e New terminal block for text-mode pseudo-graphics uses Unicode block or Braille characters to offer
improved resolution compared to the dumb or caca terminals.

e New terminal webp generates a single frame or an animation sequence using webp encoding. Frames
are generated using pngcairo, then encoded through the WebPAnimEncoder API exported by libwebp
and libwebpmux.

Watchpoints

Watchpoints are target values associated with individual plots in a graph. As that plot is drawn, each com-
ponent line segment is monitored to see if its endpoints bracket the target value of a watchpoint coordinate
(x, y, or z) or function f(x,y). If a match is found, the [x,y] coordinates of the match point are saved for
later use. See watchpoints (p. 75). Possible uses include

e Find the intersection points of two curves
e Find zeros of a function
e Find and notate where a dependent variable (y or z) or function f(x,y) crosses a threshold value

e Use the mouse to track values along multiple plots simultaneously

Week-date time support

The Covid-19 pandemic of 2020/2021 generated increased interest in plotting epidemiological data, which is
often tabulated using a "week date" reporting convention. This revealed deficiencies with gnuplot support for
this convention, including errors in time formats %W and %U. These have now been remedied and support
for week-date time extended.

e Time specifier format %W has been brought into accord with the ISO 8601 week date standard.
Time specifier format %U has been brought into accord with the CDC/MMWR week date standard.

e New function tm_week(time, std) returns ISO or CDC standard week of year.

New function weekdate_iso(year, week, day) converts ISO standard week date to calendar time.

New function weekdate_cdc(year, week, day) converts CDC standard week date to calendar time.

Other new features

e Time units for setting major and minor tics. Both major and minor tics along a time axis now
accept tic intervals given in units of minutes/hours/days/weeks/months/years. See set xtics (p. 245),
set mxtics time (p. 199).

e The character sequence $# in a using specifier evaluates to the total number of columns available in
the current line of data. For example "plot FOO using 0:(column($# - 1))" plots the last-but-one field
of each row.

28

gnuplot 5.5

keyword binvalue=avg plots average, rather than sum, of binned data.
set colorbox cbtics <linestyle> affects cbtics but not other tics.

Improved rendering of intersecting pm3d surfaces - overlapping surface tiles are split into two pieces
along the line of intersection so that tiles from one surface do not incorrectly protrude though the other
surface.

New options to force total key width and number of columns. See key layout (p. 184).

set pm3d border retrace draws a border around each pm3d quadrangle in the same color as the
filled area. In principle this should have no visible effect, but it prevents some display modes like
glitchy pdf or postscript viewers from introducing antialiasing artifacts.

set isotropic adjusts the axis scaling in both 2D and 3D plots such that the x, y, and z axes all have
the same scale.

Change: Text rotation angle is not limited to integral degrees.
Special (non-numerical) linetypes 1t nodraw, 1t black, 1t bgnd See special_linetypes (p. 65).
Data-driven color assignments in histogram plots. See histograms colors (p. 91).

The position of the key box can be manually tweaked by specifying an offset to be added to whatever
position the program would otherwise use. See set key offset (p. 186).

Features introduced in version 5.4

Support for 64-bit integer arithmetic

New features in 5.4

All evaluation of expressions and functions uses 64-integer arithmetic if supported by the platform.

Integer overflow is detected and handled according to user preference. See overflow (p. 205).

Voxel grids

Gnuplot now supports operations based on 3D grids of voxel data.

set vgrid $gridname size N creates an NxNxN grid of voxels.

set vxrange [vxmin:vxmax] together with set vyrange and set vzrange define which region of
space the grid occupies. This may or may not be identical to the xyz range of the plot.

voxel(x,y,z) can be used in expressions to read or write an individual voxel.

vfill DATA _SOURCE using x:y:z:radius:(<expression>) acts analogously to a plot command
except that instead of plotting it increments voxels near each point in the input data.

vgfill is a variant of vfill that uses grid coordinates rather than user coordinates.
vclear $gridname resets an existing voxel grid to contain all zero values.

The current contents of one or more voxel grids can be referenced by splot commands to assign colors or
other properties of plot elements by using the voxel function in using specifiers. See demo voxel.dem.

show vgrid reports basic statistics about all currently defined voxel grids.

Voxel grids can also be plotted by name in splot commands with plot styles dots, points, or isosur-
face. See demo vplot.dem.

gnuplot 5.5 29

New plot styles and style options

3D plot style with polygons reads polygon faces from a data file. This can be used to create a surface
or to construct a solid object. See with polygons (p. 97).

splot $voxelgrid with {dots|points} marks all voxels whose value is above a requested threshold
level.

splot $voxelgrid with isosurface creates a tessellated 3D surface enclosing voxels above a requested
threshold level. See isosurface (p. 104).

Voxel grid values can be referenced in the using specifiers for 3D plots.

set spiderplot selects a new plotting mode allowing creation of spider plots (also known as radar
charts). These are essentially parallel axis plots where the axes are arranged radially rather than
vertically. See spiderplot (p. 98), set style spiderplot (p. 230), set paxis (p. 212).

Plot style with circles can be used in 3D plots.
Plot style with boxes can be used in 3D plots.

2D plot style with arrows is identical to with vectors except that each arrow is specified using
x:y:length:angle rather than x:y:xdelta:ydelta

splot FOO with pm3d fillcolor <colorspec>
pm3d surfaces can have individual fillstyle and separate top/bottom fillcolor

pm3d option noclipcb causes quadrangles with palette color outside cbrange to be skipped rather
than being drawn with color clipped to cbmin or chmax.

Customized contour line types. See set cntrparam (p. 161).

The vertical lines connecting the base plane to the corners of a 3D surface can be toggled on/off. See
set cornerpoles (p. 166).

New data pre-processing filters

zsort sorts 2D points on values in a third column. See zsort (p. 134). This is useful to bring a small
number of salient points in a very large data set to the front so that they are not occluded.

New commands and command options

Voxel grid commands. See set vgrid (p. 237), set vxrange (p. 239), vclear (p. 266), vfill
(p. 266), vgfill (p. 266), and voxel (p. 45).

New options for showing the xy xz and yz planes in 3D plots. See set walls (p. 239), set grid
vertical (p. 177).

set table separator {tab|comma|"char"} can be used to create csv files. See plot with table
(p. 232).

New options set view projection {xy|xz|yz} adjust view angles, axis tic and label placement to
generate a 2D projection of a 3D splot. set view projection xy is equivalent to set view map.

set rgbmax <value> controls interpretation of input RGB values.
Array size can be implicit if an initializer is present, e.g. Array A = [1,2,3].
Optional radial clipping of line segments in polar mode. See set clip (p. 160).

Extra lines to customize the key can be added by substituting keyentry in place of a filename or func-
tion in plot and splot commands. This produces a line in the key without generating a corresponding
plot. See keyentry (p. 184).

User-specified translation of mouse coordinates (EXPERIMENTAL). See map_projection demo.

30 gnuplot 5.5

e The load command can input commands from a datablock as an alternative to reading them from a
file.

e set datafile columnheaders causes first line of input to be read as strings rather than as data
values. Equivalent to set key autotitle columnheader except that it does not affect generation of
key entries. If this option is in effect the stats command will generate an array of strings containing
the column headers found.

New terminals and terminal options

e The pcl5 terminal has been extended to support PCL5e/PCL5¢ printers and many modern gnuplot
features.

e The pstricks terminal has been extended to support many modern gnuplot features including RGB
colors and transparency, filled polygons, and boxes.

e New terminal pict2e to use the LaTeX2e pict2e environment. It directly supersedes older terminals
latex, emtex, eepic, and tpic, which are no longer built by default.

e The texdraw terminal has been extended to support text at arbitrary angles, variable line width, v5
dashed lines, and filled boxes and polygons. It can now be used with plain TeX, too. It still does not
support color.

e The previously experimental Direct2D variant of the windows terminal replaces the GDI and GDI+
variants. It now supports printing using D2D and color fonts.

e The dospc and svga DOS terminals have been modernized and now support interactive keyboard and
mouse (svga only) input.

Pixmaps as objects

e set pixmap allows import of an image in standard format (png jpeg gif) as a pixmap that can be
positioned anywhere in a plot or on the page. Unlike plotting with image, pixmap objects retain
their original aspect ratio and size independent of axis scaling or rotation. See pixmap (p. 212).

Other new features

e Enhanced text mode accepts \U+xxxx (xxxx is a 4 or 5 character hexadecimal) as representing a
Unicode code point that is converted to the corresponding UTF-8 byte sequence on output.

Changes

e pm3d filled area quadrangles are clipped smoothly to current zrange. This affects pm3d surfaces
and also the faces of 3D boxes, polygons, etc.

e Revised syntax for plot style 'with parallelaxes’. See parallel (p. 95). The histogram, parallelaxis, and
spiderplot styles now use similar syntax that can iterate over plot elements: plot for [column=1:N]
DATA using column

e Imaginary values returned by the using specifier of a 2D plot are treated as undefined values (NaN)
rather than as real(value). This was always true for function plots and 3D data plots. E.g. the
following two plots are equivalent. plot [-1:1] sqrt(x); plot [-1:1] *+’ using 1:(sqrt($1)

e The set fontpath command is deprecated. The search path for fonts to be embedded in output from
the postscript terminal has been revised.

gnuplot 5.5 31

Features introduced in version 5.2

New plot styles and style options

3D plot style with zerrorfill. See zerrorfill (p. 104), fenceplots (p. 104) and zerror demo.
Beeswarm plots. See set jitter (p. 181), beeswarm (p. 77) and beeswarm plot demo

The symbol used for individual points in a plot can be controlled by data values (see pointtype
variable (p. 97))

New data pre-processing filters

Normalized frequency of occurrence in a data set (see smooth fnormal (p. 137))
Automated binning of data (see bins (p. 133))

Polar mode improvements and extensions

Polar coordinates may be used in label, arrow, and object definitions

set [m]ttics places ticmarks and labels on the perimeter of a polar plot. See polar axis and
ticlabels demo

set rlabel (p. 221) places a label above the r axis

Inverted rrange (p. 221) (i.e. set rrange [90:0]) allows use of celestial horizontal coordinates. See
solar path demo

set border polar (p. 157) draws a solid line around the perimeter of a polar plot

set theta (p. 233) controls the position of theta = 0 around the perimeter of a polar plot and the
sense (clockwise or anti-clockwise) of increasing theta

Nonlinear coordinates systems

Any plot axis can be assigned a pair of functions, possibly nonlinear, that describe the forward and
reverse mapping to a linear range (see set nonlinear (p. 200)) Nonlinear x/y axis demo

The familiar command set logscale has been reimplemented as a special case nonlinear axis where
the paired functions are log(x) and exp(x).

New commands and command options

Inside the bracketed clause of an iteration, continue jumps immediately to the next iteration, break
immediately exits from the iteration

toggle {<plotno> | "plottitle" | all}" interactively enables or disables display of one element of
the current plot (see toggle (p. 264))

save fit replaces deprecated command update

set table "outfile.name" append will append subsequent tabulated plots to an existing text file
rather replacing its contents

set pm3d lighting describes a lighting model with specular highlighting (see lighting (p. 215))

set minussign tells gnuplot to use a special symbol in the current encoding to replace the ascii
character -’ in negative numbers

set micro tells gnuplot to use a special symbol in the current encoding to replace the ascii character
w’ for the scientific notation prefix "micro" The special typographic symbols for micro and minussign
are used only in axis tic labels and strings explicitly created with gprintf(). The byte sequence used to
represent these characters depends on the current encoding.

http://gnuplot.info/demo_5.2/zerror.html
http://gnuplot.info/demo_5.2/jitter.html
http://gnuplot.info/demo_5.2/ttics.html
http://gnuplot.info/demo_5.2/ttics.html
http://gnuplot.info/demo_5.2/solar_path.html
http://gnuplot.info/demo_5.2/nonlinear3.html

32

gnuplot 5.5

New data type "array"

This gnuplot version introduces a new data type array name|[size]. An array must be declared before
use. Each array element A[i] may be a string, an integer, a real number, or a complex value. A single
array may contain elements with different types. The cardinality operator |A| returns the size of array
A. See arrays (p. 57).

New terminals and terminal options

See sixelgd (p. 309) for description of a new terminal that supports interleaving plots with the
command lines that generated them if gnuplot is run inside a vt340-compatible terminal emulator

The domterm (p. 281) terminal supports interleaving plots with the command lines that generated
them if gnuplot is run inside an svg-aware terminal emulator

The windows (p. 316) terminal supports saving the current graph to a bitmap file

The windows (p. 316) terminal graph window can be docked to the wgnuplot text window
New (experimental) Direct2D/DirectWrite backend for the windows terminal

The wxt terminal supports exporting to an EMF file or printer on Windows

The dumb terminal supports ANSI colors for lines and fill area

The tkcanvas terminal has been rewritten to support many more modern gnuplot features, as well as
new languages. (Since 5.0.3)

Other new features

An additional rotation angle azimuth affects the orientation of 3D plots. This can be set from the
command line (see set view azimuth (p. 238)) or by dragging with the right mouse button. Hotkey
z resets azimuth to 0.

gnuplot running under Windows can interpret Unicode (BMP) input scripts by converting them to the
current encoding from set encoding, including UTF-8

Textboxes can be assigned a border color and fill color (see set style textbox (p. 230))
Customized plot legends (see plot title (p. 146), set key (p. 181), multiple keys (p. 186))

A sampling range specifier for plotting with pseudofile '+’ can include a sampling interval. For example:
plot sample [t=0:100:10] "+’ using (t):(1):(label[t]) with labels

Pseudo-file "++4’ generates samples on the u and v axes, rather than x and y. This allows placement of
multiple parametric surfaces in 3D that occupy distinct regions of Cartesian space. See sampling.dem.

new formats descriptors tH tM tS handle relative times (interval lengths). See time_specifiers
(p. 176).

"R initiates a reverse-search through the history for the built-in readline which is used on Windows,
too, see command-line-editing (p. 36).

Revised printing support on Windows using set output "PRN", see windows printing (p. 317).

Features introduced in version 5.0

The dot-dash pattern of a line can now be specified independent of other line properties. See dashtype
(p. 64), set dashtype (p. 166), set linetype (p. 190)

The default sequence of colors used for successive elements in a plot is more easily distinguished by users
with color-vision defects. The color sequence is under user control (see set colorsequence (p. 160)).
This mechanism can also be used to generate monochrome plots (see set monochrome (p. 194)). In

gnuplot 5.5 33

previous gnuplot versions monochrome could only be selected when changing the current terminal
via set terminal.

e New plot styles with parallelaxes, with table, and labeled contours.
e New data pre-processing filter for monotonic cubic splines (see smooth mcsplines (p. 136))

e Text markup now supports bold and italic font settings in addition to subscript, superscript, font
size and other previously available properties. Enhanced text mode is now enabled by default. See
enhanced text (p. 38). Text elements can be enclosed in a box (see set style textbox (p. 230)).

e Interactive terminals support hypertext labels that only appear when the mouse hovers over the label’s
anchor point.

e New coordinate system (Degrees, Minutes, Seconds). See set xtics geographic (p. 248).

e The default format for axis labels is "% h" ("$%h$" for LaTeX terminals). This format is like the C
standard format %g except that the exponential term, if present, is written using a superscript. E.g.
1.2 x 1075 rather than 1.2E05.

e Command scripts may place in-line data in a named data block for repeated plotting. See inline data
(p. 60).

e Support for 32-bit Alpha channel + RGB color #AARRGGBB. See colorspec (p. 62).

e Support for HSV color space via a translation function hsv2rgh(H,S,V).

e Secondary axes (x2, y2) may be locked to the primary axis via a mapping function. In the simplest
case this guarantees that the primary and secondary axis ranges are identical. In the general case it
allows you to define a non-linear axis, something that previously was possible only for log scaling. See
set link (p. 190).

e Each function in a plot command may optionally be preceded by a sampling range. This does not affect
the overall range of the plot, only the range over which this function is sampled. See plot (p. 124)
and piecewise.dem.

e If the external library libcerf is available, it is used to provide complex math routines cerf, cdawson,
erfi, faddeeva, and the Voigt profile VP(x,sigma,gamma).

e The import command attaches a user-defined function name to a function provided by an external
shared object (support is operating-system dependent). A template header and example source and
make files for creating a suitable external shared object are provided in the demo collection.

e Previous commands in the history list of an interactive session can be reexecuted by number. For
example, history !5 will reexecute the command numbered 5 in the history list.

e Bit-shift operators >> and <<.

e Shell invocation of gnuplot can pass parameters to a gnuplot script. gnuplot -c scriptfile.gp ARG1
ARG2 ARG3 ...

Differences between versions 4 and 5

Some changes introduced in version 5 may cause certain scripts written for earlier versions of gnuplot to
behave differently.

* Revised handling of input data containing NaN, inconsistent number of data columns, or other unexpected
content. See Note under missing (p. 166) for examples and figures.

* Time coordinates are stored internally as the number of seconds relative to the standard unix epoch 1-
Jan-1970. Earlier versions of gnuplot used a different epoch internally (1-Jan-2000). This change resolves
inconsistencies introduced whenever time in seconds was generated externally. The epoch convention used
by a particular gnuplot installation can be determined using the command print strftime("%F",0). Time
is now stored to at least millisecond precision.

34 gnuplot 5.5

* The function timecolumn(N,"timeformat") now has 2 parameters. Because the new second parameter
is not associated with any particular data axis, this allows using the timecolumn function to read time data
for reasons other than specifying the x or y coordinate. This functionality replaces the command sequence
set xdata time; set timefmt "timeformat". It allows combining time data read from multiple files with
different formats within a single plot.

* The reverse keyword of the set [axis]range command affects only autoscaling. It does not invert or
otherwise alter the meaning of a command such as set xrange [0:1]. If you want to reverse the direction
of the x axis in such a case, say instead set xrange [1:0].

* The call command is provides a set of variables ARGC, ARGO, ..., ARG9. ARGO holds the name of the
script file being executed. ARG1 to ARGY are string variables and thus may either be referenced directly or
expanded as macros, e.g. @QARG1. The contents of ARGO ... ARG9 may alternatively be accessed as array
elements ARGV[0] ... ARGV[ARGC]. An older gnuplot convention of referencing call parameters as tokens
$0 ... $9 is deprecated.

* The optional bandwidth for the kernel density smoothing option is taken from a keyword rather than a
data column. See smooth kdensity (p. 138).

Deprecated syntax

Gnuplot version 4 deprecated certain syntax used in earlier versions but provided a configuration option that
allowed backward compatibility. Support for the old syntax has now been removed.

Deprecated in version 4 and removed in version 5:

set title "01ld" 0,-1

set data linespoints

plot ’file’ thru f(x)

plot 1 2 4 # horizontal line at y=1
update

Current equivalent:

TITLE = "New"

set title TITLE offset char O, char -1
set style data linespoints

plot ’file’ using 1:(f(column(2)))
plot 1 linetype 2 pointtype 4

save fit "filename"

Deprecated in version 5

if (defined(VARNAME))
set style increment user
call ’script’ 1.23 ABC
(in script: print $0, "$1", "number of args = $#")
set fontpath
set clabel
fit control variables FIT_x*

Current equivalent:

if (exists("VARNAME"))
set linetype
call ’script’ 1.23 "ABC"
(in script: print ARG1, ARG2, "number of args = ", ARGC
set cntrlabel
set fit <option> <value>

gnuplot 5.5 35

Deprecated in version 5.4
use of a file containing ‘reread‘ to perform iteration
N = 0; 1load "file-containing-reread";
file content:
N = N+1
plot func(N,x)
pause -1
if (N<5) reread

Current equivalent
do for [N=1:5] {
plot func(N, x)
pause -1

Demos and Online Examples

The gnuplot distribution contains a collection of examples in the demo directory. You can browse on-line
versions of these examples produced by the png, svg, and canvas terminals at http://gnuplot.info/demos

The commands that produced each demo plot are shown next to the plot, and the corresponding gnuplot
script can be downloaded to serve as a model for generating similar plots.

Batch /Interactive Operation

Gnuplot may be executed in either batch or interactive modes, and the two may even be mixed together
on many systems.

Any command-line arguments are assumed to be either program options (see command-line-options) or
names of files containing gnuplot commands. Each file or command string will be executed in the order
specified. The special filename "-" is indicates that commands are to be read from stdin. Gnuplot exits after
the last file is processed. If no load files and no command strings are specified, gnuplot accepts interactive
input from stdin.

Command line options

Gnuplot accepts the following options on the command line
-V, —--version
-h, --help
-p, ——persist
-d, ——default-settings
-s, ——-slow
-e "commandl; command2;
-c scriptfile ARG1 ARG2 ...

-p tells the program not to close any remaining interactive plot windows when the program exits.
-d tells the program not to execute any private or system initialization (see initialization (p. 69)).

-s tells the program to wait for slow font initialization on startup. Otherwise it prints an error and continues
with bad font metrics.

-e "command" tells gnuplot to execute that single command before continuing.

-c is equivalent to -e "call scriptfile ARG1 ARG2 ...". See call (p. 106).

http://gnuplot.info/demos/
http://gnuplot.info/demos/

36 gnuplot 5.5

Examples

To launch an interactive session:

gnuplot

To launch a batch session using two command files "inputl" and "input2":

gnuplot inputl input2

To launch an interactive session after an initialization file "header" and followed by another command file
"trailer":

gnuplot header - trailer

To give gnuplot commands directly in the command line, using the "-persist" option so that the plot remains
on the screen afterwards:

gnuplot -persist -e "set title ’Sine curve’; plot sin(x)"

To set user-defined variables a and s prior to executing commands from a file:

gnuplot -e "a=2; s=’file.png’" input.gpl

Canvas size

This documentation uses the term "canvas" to mean the full drawing area available for positioning the plot
and associated elements like labels, titles, key, etc. NB: For information about the HTML5 canvas terminal
see set term canvas (p. 275).

In early versions of gnuplot, some terminal types used the values from set size to control also the size of
the output canvas; others did not. The use of ’set size’ for this purpose was deprecated in version 4. Almost
all terminals now behave as follows:

set term <terminal type> size <XX>, <YY> controls the size of the output file, or "canvas". By
default, the plot will fill this canvas.

set size <XX>, <YY> scales the plot itself relative to the size of the canvas. Scale values less than 1 will
cause the plot to not fill the entire canvas. Scale values larger than 1 will cause only a portion of the plot to
fit on the canvas. Please be aware that setting scale values larger than 1 may cause problems.

Example:

set size 0.5, 0.5

set term png size 600, 400
set output "figure.png"
plot "data" with lines

These commands produce an output file "figure.png" that is 600 pixels wide and 400 pixels tall. The plot
will fill the lower left quarter of this canvas.

Command-line-editing

Command-line editing and command history are supported using either an external gnu readline library,
an external BSD libedit library, or a built-in equivalent. This choice is a configuration option at the time
gnuplot is built.

The editing commands of the built-in version are given below. Please note that the action of the DEL key
is system-dependent. The gnu readline and BSD libedit libraries have their own documentation.

gnuplot 5.5 37

’ Command-line Editing Commands

Character Function
’ Line Editing
"B move back a single character.
°F move forward a single character.
“A move to the beginning of the line.
“E move to the end of the line.
“H delete the previous character.
DEL delete the current character.
°D delete current character. EOF if line is empty.
“K delete from current position to the end of line.
“L redraw line in case it gets trashed.
Y delete the entire line.
W delete previous word.
v inhibits the interpretation of the following key as editing command.
TAB performs filename-completion.
] History
“P move back through history.
°N move forward through history.
"R starts a backward-search.

Comments

The comment character # may appear almost anywhere in a command line, and gnuplot will ignore the
rest of that line. A # does not have this effect inside a quoted string. Note that if a commented line ends
in ’\” then the subsequent line is also treated as part of the comment.

See also set datafile commentschars (p. 168) for specifying a comment character for data files.

Coordinates

The commands set arrow, set key, set label and set object allow you to draw something at an arbitrary
position on the graph. This position is specified by the syntax:

{<system>} <x>, {<system>} <y> {,{<system>} <z>}

Each <system> can either be first, second, polar, graph, screen, or character.

first places the x, y, or z coordinate in the system defined by the left and bottom axes; second places it
in the system defined by the x2,y2 axes (top and right); graph specifies the area within the axes — 0,0 is
bottom left and 1,1 is top right (for splot, 0,0,0 is bottom left of plotting area; use negative z to get to the
base — see set xyplane (p. 249)); screen specifies the screen area (the entire area — not just the portion
selected by set size), with 0,0 at bottom left and 1,1 at top right. character coordinates are used primarily
for offsets, not absolute positions. The character vertical and horizontal size depend on the current font.

polar causes the first two values to be interpreted as angle theta and radius r rather than as x and y. This
could be used, for example, to place labels on a 2D plot in polar coordinates or a 3D plot in cylindrical
coordinates.

If the coordinate system for x is not specified, first is used. If the system for y is not specified, the one used
for x is adopted.

In some cases, the given coordinate is not an absolute position but a relative value (e.g., the second position
in set arrow ... rto). In most cases, the given value serves as difference to the first position. If the given
coordinate belongs to a log-scaled axis, a relative value is interpreted as multiplier. For example,

38 gnuplot 5.5

set logscale x
set arrow 100,5 rto 10,2

plots an arrow from position 100,5 to position 1000,7 since the x axis is logarithmic while the y axis is linear.

If one (or more) axis is timeseries, the appropriate coordinate should be given as a quoted time string
according to the timefmt format string. See set xdata (p. 241) and set timefmt (p. 235). Gnuplot
will also accept an integer expression, which will be interpreted as seconds relative to 1 January 1970.

Datastrings

Data files may contain string data consisting of either an arbitrary string of printable characters containing
no whitespace or an arbitrary string of characters, possibly including whitespace, delimited by double quotes.
The following line from a datafile is interpreted to contain four columns, with a text field in column 3:

1.000 2.000 "Third column is all of this text" 4.00

Text fields can be positioned within a 2-D or 3-D plot using the commands:

plot ’datafile’ using 1:2:4 with labels
splot ’datafile’ using 1:2:3:4 with labels

A column of text data can also be used to label the ticmarks along one or more of the plot axes. The example
below plots a line through a series of points with (X,Y) coordinates taken from columns 3 and 4 of the input
datafile. However, rather than generating regularly spaced tics along the x axis labeled numerically, gnuplot
will position a tic mark along the x axis at the X coordinate of each point and label the tic mark with text
taken from column 1 of the input datafile.

set xtics
plot ’datafile’ using 3:4:xticlabels(l) with linespoints

There is also an option that will interpret the first entry in a column of input data (i.e. the column heading)
as a text field, and use it as the key title for data plotted from that column. The example given below will
use the first entry in column 2 to generate a title in the key box, while processing the remainder of columns
2 and 4 to draw the required line:

plot ’datafile’ using 1:(£($2)/$4) with lines title columnhead(2)

Another example:

plot for [i=2:6] ’datafile’ using i title "Results for ".columnhead(i)

This use of column headings is automated by set datafile columnheaders or set key autotitle column-
head. See labels (p. 93), using xticlabels (p. 142), plot title (p. 146), using (p. 139), key autotitle
(p. 184).

Enhanced text mode

Many terminal types support an enhanced text mode in which additional formatting information is embedded
in the text string. For example, "x"2" will write x-squared as we are used to seeing it, with a superscript
2. This mode is selected by default when you set the terminal, but may be toggled afterward using "set
termoption [noJenhanced", or by marking individual strings as in "set label "x_2’ noenhanced".

gnuplot 5.5 39

Enhanced Text Control Codes
Control Example Result Explanation

- a"x a® superscript

_ a_x Qg subscript

Q a@ b_{cd} al, phantom box (occupies no width)

& d&{space}b duuuoub inserts space of specified length

- ~a{.8-} a overprints -’ on ’a’, raised by .8

times the current fontsize
{/Times abc} abc print abc in font Times at current size
{/Times*2 abc} abc print abc in font Times at twice current size
{/Times:Italic abc} abc print abc in font Times with style italic
{/Arial:Bold=20 abc} abc print abc in boldface Arial font size 20
\U+ \U+221E 00 Unicode point U+221E INFINITY

The markup control characters act on the following single character or bracketed clause. The bracketed clause
may contain a string of characters with no additional markup, e.g. 2°{10}, or it may contain additional
markup that changes font properties. Font specifiers MUST be preceded by a ’/’ character that immediately
follows the opening '{’. If a font name contains spaces it must be enclosed in single or double quotes.

Examples: The first example illustrates nesting one bracketed clause inside another to produce a boldface
A with an italic subscript i, all in the current font. If the clause introduced by :Normal were omitted the
subscript would be both italic and boldface. The second example illustrates the same markup applied to
font "Times New Roman" at 20 point size.

{/:Bold A_{/:Normal{/:Italic il}}}
{/"Times New Roman":Bold=20 A_{/:Normal{/:Italic i}}}

The phantom box is useful for a@~b_c to align superscripts and subscripts but does not work well for
overwriting an accent on a letter. For the latter, it is much better to use an encoding (e.g. is0_8859_1 or
utf8) that contains a large variety of letters with accents or other diacritical marks. See set encoding
(p. 171). Since the box is non-spacing, it is sensible to put the shorter of the subscript or superscript in
the box (that is, after the @).

Space equal in length to a string can be inserted using the '&’ character. Thus
>abc&{def}ghi’

would produce

’abc ghi’.

The '~ ’ character causes the next character or bracketed text to be overprinted by the following character
or bracketed text. The second text will be horizontally centered on the first. Thus ’~ a/’ will result in an
‘a’ with a slash through it. You can also shift the second text vertically by preceding the second text with a
number, which will define the fraction of the current fontsize by which the text will be raised or lowered. In
this case the number and text must be enclosed in brackets because more than one character is necessary. If
the overprinted text begins with a number, put a space between the vertical offset and the text ("~ {abc}{.5
000}’); otherwise no space is needed (*~ {abc}{.5 — }’). You can change the font for one or both strings (*~
a{.5 /*.2 o}’ — an ’a’ with a one-fifth-size 0’ on top — and the space between the number and the slash is
necessary), but you can’t change it after the beginning of the string. Neither can you use any other special
syntax within either string. You can, of course, use control characters by escaping them (see below), such
as ™~ af\"}

You can escape control characters using \, e.g., \\, \{, and so on. See escape sequences (p. 40) below.

Note that strings in double-quotes are parsed differently than those enclosed in single-quotes. The major
difference is that backslashes may need to be doubled when in double-quoted strings.

The file "ps_guide.ps" in the /docs/psdoc subdirectory of the gnuplot source distribution contains more
examples of the enhanced syntax, as does the demo enhanced_utf8.dem

http://www.gnuplot.info/demo/enhanced_utf8.html

40 gnuplot 5.5

Escape sequences

The backslash character \ is used to escape single byte character codes or Unicode entry points.

The form \ooo (where 000 is a 3 character octal value) can be used to index a known character code in
a specific font encoding. For example the Adobe Symbol font uses a custom encoding in which octal 245
represents the infinity symbol. You could embed this in an enhanced text string by giving the font name
and the character code "{/Symbol \245}". This is mostly useful for the PostScript terminal, which cannot
easily handle UTF-8 encoding.

You can specify a character by its Unicode code point as \U-+hhhh, where hhhh is the 4 or 5 character
hexadecimal code point. For example the code point for the infinity symbol is \U+221E. This will be
converted to a UTF-8 byte sequence on output if appropriate. In a UTF-8 environment this mechanism is
not needed for printable special characters since they are handled in a text string like any other character.
However it is useful for combining forms or supplemental diacritical marks (e.g. an arrow over a letter to
represent a vector). See set encoding (p. 171), utf8 (p. 171), and the online unicode demo.

Environment

A number of shell environment variables are understood by gnuplot. None of these are required, but may
be useful.

GNUTERYM, if defined, is used to set the terminal type on start-up. Starting with version 5.2 the entire
string in GNUTERM is passed to "set term" so that terminal options may be included. E.g.
GNUTERM="postscript eps color size 5in, 3in"

This can be overridden by a system or personal initialization file (see startup (p. 69)) and of course by
later explicit set term commands.

GNUHELP may be defined to be the pathname of the HELP file (gnuplot.gih).

On VMS, the logical name GNUPLOTS$HELP should be defined as the name of the help library for gnuplot.
The gnuplot help can be put inside any VMS system help library.

On Unix, HOME is used as the name of a directory to search for a .gnuplot file if none is found in the
current directory. Additionally gnuplot searches for $XDG_CONFIG_HOME/gnuplot/gnuplotrc which is
loaded after .gnuplot. On MS-DOS, Windows and OS/2, GNUPLOT is used. On Windows, the NT-specific
variable USERPROFILE is also tried. VMS, SYS$SLOGIN: is used. Type help startup.

On Unix, PAGER is used as an output filter for help messages.
On Unix, SHELL is used for the shell command. On MS-DOS and OS/2, COMSPEC is used.

FIT_SCRIPT may be used to specify a gnuplot command to be executed when a fit is interrupted — see
fit (p. 110). FIT_LOG specifies the default filename of the logfile maintained by fit.

GNUPLOT_LIB may be used to define additional search directories for data and command files. The variable
may contain a single directory name, or a list of directories separated by a platform-specific path separator,
eg. " on Unix, or ’;’ on DOS/Windows/OS/2 platforms. The contents of GNUPLOT_LIB are appended to
the loadpath variable, but not saved with the save and save set commands.

Several gnuplot terminal drivers access TrueType fonts via the gd library. For these drivers the font search
path is controlled by the environmental variable GDFONTPATH. Furthermore, a default font for these
drivers may be set via the environmental variable GNUPLOT_DEFAULT_GDFONT.

The postscript terminal uses its own font search path. It is controlled by the environmental variable GNU-
PLOT_FONTPATH.

GNUPLOT_PS_DIR is used by the postscript driver to search for external prologue files. Depending on the
build process, gnuplot contains either a built-in copy of those files or a default hardcoded path. You can
use this variable have the postscript terminal use custom prologue files rather than the default files. See
postscript prologue (p. 304).

http://www.gnuplot.info/demo_5.4/unicode.html

gnuplot 5.5 41

Expressions

In general, any mathematical expression accepted by C, FORTRAN, Pascal, or BASIC is valid. The prece-
dence of these operators is determined by the specifications of the C programming language. White space
(spaces and tabs) is ignored inside expressions.

Note that gnuplot uses both "real" and "integer" arithmetic, like FORTRAN and C. Integers are entered as
"1, 10", etc; reals as "1.0", "-10.0", "lel", 3.5e-1, etc. The most important difference between the two
forms is in division: division of integers truncates: 5/2 = 2; division of reals does not: 5.0/2.0 = 2.5. In
mixed expressions, integers are "promoted" to reals before evaluation: 5/2e0 = 2.5. The result of division
of a negative integer by a positive one may vary among compilers. Try a test like "print -5/2" to determine
if your system always rounds down (-5/2 yields -3) or always rounds toward zero (-5/2 yields -2).

The integer expression "1/0" may be used to generate an "undefined" flag, which causes a point to be
ignored. Or you can use the pre-defined variable NaN to achieve the same result. See using (p. 139) for
an example.

Gnuplot can also perform simple operations on strings and string variables. For example, the expression
("A" . "B" eq "AB") evaluates as true, illustrating the string concatenation operator and the string equality
operator.

A string which contains a numerical value is promoted to the corresponding integer or real value if used in
a numerical expression. Thus ("3" + "4" == 7) and (6.78 == "6.78") both evaluate to true. An integer,
but not a real or complex value, is promoted to a string if used in string concatenation. A typical case is
the use of integers to construct file names or other strings; e.g. ("file" . 4 eq "filed") is true.

Substrings can be specified using a postfixed range descriptor [beg:end]. For example, "ABCDEF"[3:4] ==
"CD" and "ABCDEF"[4:*] == "DEF" The syntax "string"[beg:end] is exactly equivalent to calling the
built-in string-valued function substr("string" ,beg,end), except that you cannot omit either beg or end from
the function call.

Complex values

Arithmetic operations and most built-in functions support the use of complex arguments. Complex constants
are expressed as {<real>,<imag>}, where <real> and <imag> must be numerical constants. Thus {0,1}
represents 'I’. The program predefines a variable I = {0,1} on entry that can be used to generate complex
values in terms of other variables. Thus x + y*I is a valid expression but {x,y} is not. The real and
imaginary components of complex value z can be extracted as real(z) and imag(z). The modulus is given by
abs(z). The phase angle is given by arg(z).

Gnuplot’s 2D and 3D plot styles expect real values; to
plot a complex-valued function f(z) with non-zero imag-
inary components you must plot the real or imaginary
component, or the modulus or phase. For example to
represent the modulus and phase of a function f(z) with
complex argument and complex result it is possible to
use the height of the surface to represent modulus and
use the color to represent the phase. It is convenient
to use a color palette in HSV space with component H Real(z) Imag(z)
(hue), running from 0 to 1, mapped to the range of the
phase returned by arg(z), [-m:w], so that the color wraps
when the phase angle does. By default this would be at H = 0 (red). You can change this with the start
keyword in set palette so that some other value of H is mapped to 0. The example shown starts and wraps
at H = 0.3 (green). See set palette defined (p. 207), arg (p. 42), set angles (p. 153).

set palette model HSV start 0.3 defined (0 0 1 1, 1 11 1)

set cbrange [-pi:pi]

set cbtics ("-m" -pi, "mn" pi)

Eo(z) n

42 gnuplot 5.5

set pm3d corners2color cl

E0(z) = exp(-2z)/z

I={0,1%}

splot ’++’ using 1:2:(abs(E0(x+Ixy))): (arg(E0(x+I*y))) with pm3d

Constants

Integer constants are interpreted via the C library routine strtoll(). This means that constants beginning
with "0" are interpreted as octal, and constants beginning with "0x" or "0X" are interpreted as hexadecimal.

Floating point constants are interpreted via the C library routine atof().

Complex constants are expressed as {<real>,<imag>}, where <real> and <imag> must be numerical
constants. For example, {0,1} represents 1’ itself; {3,2} represents 3 + 2i. The curly braces are explicitly
required here. The program predefines a variable I = {0,1} on entry that can be used to avoid typing the
explicit form. For example 3 4+ 2*I is the same as {3,2}, with the advantage that it can be used with
variable coefficient for the imaginary component. Thus x + y*I is a valid expression but {x,y} is not.

String constants consist of any sequence of characters enclosed either in single quotes or double quotes. The
distinction between single and double quotes is important. See quotes (p. 73).

Examples:

1 -10 Oxffaabb # integer constants

1.0 -10. 1lel 3.5e-1 # floating point constants

{1.2, -3.4} # complex constant

"Line 1\nLine 2" # string constant (\n is expanded to newline)

’123\n456° # string constant (\ and n are ordinary characters)
Functions

Arguments to math functions in gnuplot can be integer, real, or complex unless otherwise noted. Functions
that accept or return angles (e.g. sin(x)) treat angle values as radians, but this may be changed to degrees
using the command set angles.

] Math library and built-in functions

Function Arguments Returns (c indicates complex result)
abs(x) int or real absolute value of z, |z|

abs(x) complex length of z, \/real(x)? + imag(x)2
acos(x) ¢ cos~!x (inverse cosine)

acosh(x) ¢ cosh™ z (inverse hyperbolic cosine)
airy(x) real Airy function Ai(x) for real x
arg(x) complex the phase of z, —7 <arg(z)<
asin(x) ¢ sin~!z (inverse sin)

asinh(x) ¢ sinh™'z (inverse hyperbolic sin)
atan(x) ¢ tan~!z (inverse tangent)

atan2(y,x) int or real tan~!(y/x) (inverse tangent)
atanh(x) ¢ tanh™'z (inverse hyperbolic tangent)
besj0(x) real Jo Bessel function of x in radians
besjl(x) real J1 Bessel function of z in radians
besjn(n,x) int, real J,, Bessel function of x in radians
besy0(x) real Y5 Bessel function of z in radians
besyl(x) real Y7 Bessel function of z in radians

besyn(n,x) int, real Y,, Bessel function of z in radians

gnuplot 5.5 43

Math library and built-in functions

Function Arguments Returns (c indicates complex result)
besiO(x) real Modified Bessel function of order 0, z in radians
besil(x) real Modified Bessel function of order 1, z in radians
besin(n,x) int, real Modified Bessel function of order n, z in radians
cbrt(x) real cube root of x (domain and range both limited to real)
ceil(x) [x], smallest integer not less than the real part of
conj(x) complex ¢ complex conjugate of x
cos(x) ¢ cosz, cosine of x
cosh(x) ¢ cosha, hyperbolic cosine of in radians
EllipticK (k) real k € (-1:1) K (k) complete elliptic integral of the first kind
EllipticE (k) real k € [-1:1] E(k) complete elliptic integral of the second kind
EllipticPi(n,k) real n<1, real k € (-1:1) II(n, k) complete elliptic integral of the third kind
erf(x) erf(real(x)), error function of real(z)
erfc(x) erfc(real(z)), 1.0 - error function of real(z)
exp(x) ¢ e, exponential function of x
expint(n,x) int n >0, real z > 0 = [Tt "e~"!dt, exponential integral of x
floor(x) |z |, largest integer not greater than the real part of
gamma(x) I(z), gamma function of real()
ibeta(a,b,x) a,b>0,2z€[0:1] B(a,b,x) FF(ESJFbe) Jo t*7H(1 —)~ 1dt, incomplete beta
inverf(x) inverse error function of real()
igamma(a,z) complex, f(a) >0 ¢ incomplete gamma function P(a, z) = ﬁ Jote e dt
imag(x) complex imaginary part of x as a real number
int(x) real integer part of z, truncated toward zero
invnorm(x) inverse normal distribution function of real(z)
invibeta(a,b,p) real inverse incomplete beta function
invigammaf(a,p) real inverse incomplete gamma function
LambertW(z k) complex, int ¢ kth branch of complex Lambert W function
lambertw(x) real principal branch (k=0) of Lambert W function
lgamma(x) real InT'(z) for real
InGamma(x) complex ¢ InT'(z) valid over entire complex plane
log(x) ¢ log, z, natural logarithm (base e) of =
log10(x) ¢ logyyx, logarithm (base 10) of x
norm(x) normal distribution (Gaussian) function of real(z)
rand(x) int pseudo random number in the open interval (0:1)
real(x) real part of z
round(x) |x], integer nearest to the real part of z
sgn(x) lifz>0,-1if 2 <0,0if x =0. imag(x) ignored
Sign(x) complex ¢ 0if x =0, otherwise z/|z|
sin(x) ¢ sinz, sine of x
sinh(x) ¢ sinhz, hyperbolic sine of z in radians
sqri(x) ¢ +/x, square root of x
SynchrotronF (x) real Flz)=a [Ks (v) dv
tan(x) ¢ tanz, tangent of x
tanh(x) ¢ tanhx, hyperbolic tangent of z in radians
uigamma/(a,x) real, real upper incomplete gamma function Q(a,x) = F(m) f tele=tdt
voigt(x,y) real Voigt/Faddeeva function £ [%dt

Note: voigt(z,y) = real(faddeeva(z + iy))
zeta(s) complex ¢ Riemann zeta function ((s) = X2 ,k™°

44

gnuplot 5.5

Special functions from libcerf (only if available)

Function Arguments Returns (c indicates complex result)

cerf(z) complex ¢ complex error function

cdawson(z) complex ¢ complex extension of Dawson’s integral D(z) = @e_zz erfi(z)
faddeeva(z) complex ¢ rescaled complex error function w(z) =e~* erfc(—iz)

erfi(x) real imaginary error function erf(x) = —i x er f(iz)

FresnelC(x) real Fresnel integral C(x) [cos(Zt%)dt

FresnelS(x) real Fresnel integral S(x fo sin(tz)dt

VP(x,0,7) real Voigt profile VP(:E 0,7) = [T G(@';0)L(z — a';v)da
VP_fwhm(o,y) real Voigt profile full width at half maximum value

Complex special functions from Amos library (only if available)

Function Arguments Returns (c indicates complex result)

Ai(z) complex ¢ complex Airy function Ai(z)

Bi(z) complex ¢ complex Airy function Bi(z)

BesselH1(nu,z) real, complex c H,Sl)(z) Hankel function of the first kind
BesselH2(nu,z) real, complex ¢ H (2)() Hankel function of the second kind
BesselJ(nu,z) real, complex ¢ J,(2) Bessel function of the first kind

Bessel Y (nu,z) real, complex ¢ Y, (z) Bessel function of the second kind
Bessell(nu,z) real, complex ¢ I,(z) modified Bessel function of the first kind
BesselK (nu,z) real, complex ¢ K, (z) modified Bessel function of the second kind

expint (n,z)

int n > 0, complex z

E,.(z) = e~ * dt, exponential integral

Lo

gnuplot 5.5

String functions

Function Arguments Returns

gprintf(” format” x,...) any string result from applying gnuplot’s format parser
sprintf(” format” x,...) multiple string result from C-language sprintf
strlen(”string”) string number of characters in string

strstrt (7 string” " key”) strings int index of first character of substring ”key”
substr(”string” ,beg,end) multiple string ”string” [beg:end]

split(”string”,”sep”) string array of substrings

join(array,”’sep”) array,string concatenate array elements into a string
strftime(” timeformat” ,t) any string result from applying gnuplot’s time parser
strptime(” timeformat”,s) string seconds since year 1970 as given in string s
system(” command”) string string containing output stream of shell command
trim(” string ”) string string without leading or trailing whitespace
word(”string” ,n) string, int returns the nth word in ”string”

words(”string”) string returns the number of words in ”string”

Time functions

Function Arguments Returns
time(x) any the current system time in seconds
timecolumn(N,” timeformat”) int, string formatted time data from column N of input
tm_hour(t) time in sec the hour (0..23)
tm_mday(t) time in sec the day of the month (1..31)
tm_min(t) time in sec the minute (0..59)
tm_mon(t) time in sec the month (0..11)
tm_sec(t) time in sec the second (0..59)
tm_wday (t) time in sec the day of the week (Sun..Sat) as (0..6)
tm_week(t) time in sec week of year in ISO8601 ”week date” system (1..53)
tm_yday(t) time in sec the day of the year (0..365)
tm_year(t) time in sec the year
weekdate_iso(year,week,day) int time corresponding to ISO 8601 standard week date
weekdate_cdc(year,week,day) int time corresponding to CDC epidemiological week date
’ other gnuplot functions ‘
Function Arguments Returns
column(x) int or string numerical value of column x during datafile input
columnhead(x) int string containing first entry of column z in datafile.
exists("X”) string returns 1 if a variable named X is defined, 0 otherwise.
hsv2rgb(h,s,v) h,s,v € [0:1] 24bit RGB color value.
index(A x) array, any integer i such that Alfi] = x. 0 if no match.
palette(z) real 24 bit RGB palette color mapped to z.
rgbcolor("name”) string 32bit ARGB color from name or string representation.
stringcolumn(x) int or string content of column z as a string
valid(x) int test validity of column z during datafile input
value("name”) string returns the value of the named variable.
voxel(x,y,z) real value of the active grid voxel containing point (x,y,z)

Integer conversion functions: int floor ceil round

Gnuplot integer variables are stored with 64 bits of precision if that is supported by the platform.

46 gnuplot 5.5

Gnuplot complex and real variables are on most platforms stored in IEEE754 binary64 (double) floating
point representation. Their precision is limited to 53 bits, corresponding to roughly 16 significant digits.

Therefore integers with absolute value larger than 2°53 cannot be uniquely represented in a floating point
variable. L.e. for large N the operation int(real(N)) may return an integer near but not equal to N.

Furthermore, functions that convert from a floating point value to an integer by truncation may not yield the
expected value if the operation depends on more than 15 significant digits of precision even if the magnitude
is small. For example int(logl0(0.1)) returns 0 rather than -1 because the floating point representation is
equivalent to -0.999999999999999... See also overflow (p. 205).

int(x) returns the integer part of its argument, truncated toward zero. If |x| > 2763, i.e. too large to
represent as an integer, NaN is returned. If |x| > 2752 the return value will lie within a range of neighboring
integers that cannot be distinguished due to limited floating point precision. See integer conversion

(p. 45).

floor(x) returns the largest integer not greater than the real part of x. If |x| > 2752 the true value cannot
be uniquely determined; in this case the return value is NaN. See integer conversion (p. 45).

ceil(x) returns the smallest integer not less than the real part of x. If |x| > 2752 the true value cannot be
uniquely determined; in this case the return value is NaN. See integer conversion (p. 45).

round(x) returns the integer nearest to the real part of x. If |x| > 2752 the true value cannot be uniquely
determined; in this case the return value is NaN. See integer conversion (p. 45).

Elliptic integrals

The EllipticK (k) function returns the complete elliptic integral of the first kind, i.e. the definite integral
between 0 and pi/2 of the function (1 - k~2*sin~2(9))"(-0.5). The domain of k is -1 to 1 (exclusive).

.. _rm/2 2 12 -1
EllipticK(k) = ;" V1 —k?sin“0 df
The EllipticE(k) function returns the complete elliptic integral of the second kind, i.e. the definite integral
between 0 and pi/2 of the function (1 - k~2*sin~2(9))"0.5. The domain of k is -1 to 1 (inclusive).

EllipticE(k) = [7/% /1 — k2 sin® 0 do
The EllipticPi(n,k) function returns the complete elliptic integral of the third kind, i.e. the definite integral
between 0 and pi/2 of the function (1 - k~2*sin~2(9))~(-0.5) / (1 - n*sin~2(9)). The parameter n
must be less than 1, while k must lie between -1 and 1 (exclusive). Note that by definition EllipticPi(0,k)
== EllipticK(k) for all possible values of k.

-1
EllipticPi(n, k) = i [(1 — nsin® 0)v/1 — k2sin®0 | df
Elliptic integral algorithm: B.C.Carlson 1995, Numerical Algorithms 10:13-26.

Complex Airy functions

Ai(z) and Bi(z) are the Airy functions of complex argument z, computed in terms of the modified Bessel
functions K and I. Supported via an external library containing routines by Donald E. Amos, Sandia National
Laboratories, SAND85-1018 (1985).

Ai(z) = 2V5K(©) (=327
Bi(z) = \/5[111/3(() + —71/3(()]
Complex Bessel functions
BesselJ (nu,z) is the Bessel function of the first kind J.nu for real argument nu and complex argument

z. Supported via external library containing routines by Donald E. Amos, Sandia National Laboratories,
SANDS&5-1018 (1985).

gnuplot 5.5 47

BesselY (nu,z) is the Bessel function of the second kind Y_nu for real argument nu and complex argument
z. Supported via external library containing routines by Donald E. Amos, Sandia National Laboratories,
SANDS85-1018 (1985).

Bessell(nu,z) is the modified Bessel function of the first kind I.nu for real argument nu and complex
argument z. Supported via external library containing routines by Donald E. Amos, Sandia National Labo-
ratories, SANDS85-1018 (1985).

BesselK (nu,z) is the modified Bessel function of the second kind K.nu for real argument nu and com-
plex argument z. Supported via external library containing routines by Donald E. Amos, Sandia National
Laboratories, SAND85-1018 (1985).

BesselH1(nu,z) and BesselH2(nu,z) are the Hankel functions of the first and second kind
Hi(nu,z) = J(nu,z) + iY(au,z)

H2(nu,z) = J(nu,z) - iY(au,z)

for real argument nu and complex argument z. Supported via external library containing routines by Donald
E. Amos, Sandia National Laboratories, SAND85-1018 (1985).

Expint
expint(n,z) returns the exponential integral of order n, where n is an integer >= 0. This is the integral
from 1 to infinity of t*(-n) e~ (-tz) dt.

En(z) = [t e "t dt

If your copy of gnuplot was built with support for complex functions from the Amos library, then for n>0
the evaluation uses Amos routine cexint [Amos 1990 Algorithm 683, ACM Trans Math Software 16:178]. In
this case z may be any complex number with -pi < arg(z) <= pi. expint(0,z) is calculated as exp(-z)/z.

If Amos library support is not present, z is limited to real values z >= 0.

Fresnel integrals FresnelC(x) and FresnelS(x)

The cosine and sine Fresnel integrals are calculated using their relationship to the complex error function
erf(z). Due to dependence on erf(z), these functions are only available if libcerf library support is present.

C(z) = [cos(5t3)dt S(z) = [sin(Ft?)dt
C(z) +iS(z) = Lter f(z) where z = @(1 — i)z

Gamma

gamma(x) returns the gamma function of the real part of its argument. For integer n, gamma(n+1) =
n!. If the argument is a complex value, the imaginary component is ignored. For complex arguments see
InGamma (p. 48).

Igamma

igamma(a, z) returns the lower incomplete gamma function P(a, z), [Abramowitz and Stegun (6.5.1); NIST
DLMF 8.2.4]. If complex function support is present a and z may be complex values; real(a) > 0; For the
complementary upper incomplete gamma function, see uigamma (p. 51).

igammal(a, 2) = P(a,2) = 2%y*(a,2) = F(lz) Jote e tdt

One of four algorithms is used depending on a and z.
Case (1) When a is large (>100) and (z-a)/a is small (<0.2) use Gauss-Legendre quadrature with coefficients
from Numerical Recipes 3rd Edition section 6.2, Press et al (2007).

48 gnuplot 5.5

Case (2) When z > 1 and z > (a+2) use a continued fraction following Shea (1988) J. Royal Stat. Soc.
Series C (Applied Statistics) 37:466-473.

Case (3) When z < 0 and a < 75 and imag(a) == 0 use the series from Abramowitz & Stegun (6.5.29).
Otherwise (Case 4) use Pearson’s series expansion.

Note that convergence is poor in some regions of the full domain. If the chosen algorithm does not converge
to within 1.E-14 the function returns NaN and prints a warning.

If no complex function support is present the domain is limited to real arguments a > 0, z >= 0.

Invigamma

The inverse incomplete gamma function invigamma(a,p) returns the value z such that p = igamma(a,z).
p is limited to (0;1]. a must be a positive real number. The implementation in gnuplot has relative accuracy
that ranges from 1.e-16 for a<1 to 5.e-6 for a = 1.e10. Convergence may fail for a < 0.005.

Ibeta

ibeta(a,b,x) returns the normalized lower incomplete beta integral of real arguments a,b > 0, x in [0:1].

ibeta(a, b,) = Fr(gaifgg Jotet =)t

If the arguments are complex, the imaginary components are ignored. The implementation in gnuplot 5.5
uses code from the Cephes library [Moshier 1989, "Methods and Programs for Mathematical Functions",
Prentice-Hall].

Invibeta

The inverse incomplete beta function invibeta(a,b,p) returns the value z such that p = ibeta(a,b,z). a, b
are limited to positive real values and p is in the interval [0,1]. Note that as a, b approach zero (g 0.05)
invibeta() approaches 1.0 and its relative accuracy is limited by floating point precision.

LambertW

Lambert W function with complex domain and range. LambertW(z, k) returns the kth branch of the
function W defined by the equation W(z) * exp(z) = z. The complex value is obtained using Halley’s
method as described by Corless et al [1996], Adv. Comp. Math 5:329. The nominal precision is 1.E-13 but
convergence can be poor very close to discontinuities, e.g. branch points.

LnGamma

InGamma(z) returns the natural log of the gamma function with complex domain and range. Implemented
using 14 term approximation following Lanczos [1964], STAM JNA 1:86-96. The imaginary component of
the result is phase-shifted to yield a continuous surface everywhere except the negative real axis.

Random number generator

The function rand() produces a sequence of pseudo-random numbers between 0 and 1 using an algorithm
from P. L’Ecuyer and S. Cote, "Implementing a random number package with splitting facilities", ACM
Transactions on Mathematical Software, 17:98-111 (1991).

rand (0) returns a pseudo random number in the open interval (0:1)
generated from the current value of two internal
32-bit seeds.

rand(-1) resets both seeds to a standard value.

gnuplot 5.5 49

rand (x) for integer 0 < x < 2731-1 sets both internal seeds
to x.

rand({x,y}) for integer O < x,y < 27°31-1 sets seedl to x and
seed2 to y.

Special functions with complex arguments

Some special functions with complex domain are provided through external libraries. If your copy of gnuplot
was not configured to link against these libraries then it will support only the real domain or will not provide
the function at all.

Functions requiring libcerf (http://apps.jens.fz-juelich.de/libcerf) depend on configuration option —with-
libcerf. This is the default. See cerf (p. 44), cdawson (p. 44), faddeeva (p. 44), erfi (p. 44), VP
(p. 44), and VP _fwhm (p. 44).

Complex Airy, Bessel, and Hankel functions of real order nu and complex arguments require a li-
brary containing routines implemented by Douglas E. Amos, Sandia National Laboratories, SANDS&5-
1018 (1985). These routines may be found in netlib (http://netlib.sandia.gov) or in libopenspec-
fun (https://github.com/JulialLang/openspecfun). The corresponding configuration option is —with-
amos=<library directory>. See Ai (p. 46), Bi (p. 46), BesselJ (p. 46), BesselY (p. 46), Bessell
(p. 47), BesselK (p. 47), Hankel (p. 47). The complex exponential integral is provided by netlib or
libamos but not by libopenspecfun. See expint (p. 47).

Synchrotron function

The synchrotron function SynchrotronF (x) describes the power distribution spectrum of synchrotron radia-
tion as a function of x given in units of the critical photon energy (i.e. critical frequency vc).

F(z) = a [° Ks/5(v) dv where Kz, is a modified Bessel function of the second kind.

Chebyshev coefficients for approximation accurate to 1.E-15 are taken from MacLead (2000) NucllnstMeth-
PhysRes A443:540-545.

Time functions

Time The time(x) function returns the current system time. This value can be converted to a date
string with the strftime function, or it can be used in conjunction with timecolumn to generate relative
time/date plots. The type of the argument determines what is returned. If the argument is an integer,
time() returns the current time as an integer, in seconds from the epoch date, 1 Jan 1970. If the argument
is real (or complex), the result is real as well. If the argument is a string, it is assumed to be a format and it
is passed to strftime to provide a formatted time string. See also time_specifiers (p. 176) and timefmt
(p. 235).

Timecolumn timecolumn(N,"timeformat") reads string data starting at column N as a time/date
value and uses "timeformat" to interpret this as "seconds since the epoch" to millisecond precision. If no
format parameter is given, the format defaults to the string from set timefmt. This function is valid only
in the using specification of a plot or stats command. See plot datafile using (p. 139).

Tm _structure Gnuplot stores time internally as a 64-bit floating point value representing seconds since
the epoch date 1 Jan 1970. In order to interpret this as a time or date it is converted to or from a POSIX
standard structure struct_tm. Note that fractional seconds, if any, cannot be retrieved via tm_sec(). The
components may be accessed individually using the functions

e tm_hour(t) integer hour in the range 0-23

50 gnuplot 5.5

e tm_mday(t) integer day of month in the range 1-31

e tm_min(t) integer minute in the range 0-59

e tm_mon(t) integer month of year in the range 0-11

e tm_sec(t) integer second in the range 0-59

e tm_wday(t) integer day of the week in the range 0 (Sunday)-6(Saturday)
e tm_yday(t) integer day of the year the range 0-365

e tm_year(t) integer year

Tm_week The tm_week(t, standard) function interprets its first argument t as a time in seconds from
1 Jan 1970. Despite the name of this function it does not report a field from the POSIX tm structure.

If standard = 0 it returns the week number in the ISO 8601 "week date" system. This corresponds to
gnuplot’s %W time format. If standard = 1 it returns the CDC epidemiological week number ("epi week").
This corresponds to gnuplot’s %U time format. For corresponding inverse functions that convert week dates
to calendar time see weekdate_iso (p. 50), weekdate_cdc (p. 50).

In brief, ISO Week 1 of year YYYY begins on the Monday closest to 1 Jan YYYY. This may place it in the
previous calendar year. For example Tue 30 Dec 2008 has ISO week date 2009-W01-2 (2nd day of week 1 of
2009). Up to three days at the start of January may come before the Monday of ISO week 1; these days are
assigned to the final week of the previous calendar year. E.g. Fri 1 Jan 2021 has ISO week date 2020-W53-5.

The US Center for Disease Control (CDC) epidemiological week is a similar week date convention that differs
from the ISO standard by defining a week as starting on Sunday, rather than on Monday.

Weekdate_iso Syntax:

time = weekdate_iso(year, week [, day])

This function converts from the year, week, day components of a date in ISO 8601 "week date" format to
the calendar date as a time in seconds since the epoch date 1 Jan 1970. Note that the nominal year in the
week date system is not necessarily the same as the calendar year. The week is an integer from 1 to 53. The
day parameter is optional. If it is omitted or equal to 0 the time returned is the start of the week. Otherwise
day is an integer from 1 (Monday) to 7 (Sunday). See tm_week (p. 50) for additional information on an
inverse function that converts from calendar date to week number in the ISO standard convention.

Example:

Plot data from a file with column 1 containing ISO weeks

Week cases deaths

2020-05 432 1

calendar_date(w) = weekdate_iso(int(w[1:4]), int(w[6:7]1))

set xtics time format "%b\nkY"

plot FILE using (calendar_date(strcol(1))) : 2 title columnhead

Weekdate_cdc Syntax:

time = weekdate_cdc(year, week [, day])

This function converts from the year, week, day components of a date in the CDC/MMWR "epi week"
format to the calendar date as a time in seconds since the epoch date 1 Jan 1970. The CDC week date
convention differs from the ISO week date in that it is defined in terms of each week running from day 1 =
Sunday to day 7 = Saturday. If the third parameter is 0 or is omitted, the time returned is the start of the
week. See tm_week (p. 50) and weekdate_iso (p. 50).

gnuplot 5.5 51

Uigamma

uigamma(a, x) returns the regularized upper incomplete gamma function Q(a, x), NIST DLMF eq 8.2.4
For the complementary lower incomplete gamma function P(a,x), see igamma (p. 47).
Q(a, x) + P(a, x) = 1.

uigammal(a, z) = Q(a,z) = 1 — P(a,z) = ﬁ [t et

The current implementation is from the Cephes library (Moshier 2000). The domain is restricted to real
a>0, real x>=0. EXPERIMENTAL: To be replaced by an implementation that handles complex arguments.

Using specifier functions

These functions are valid only in the context of data input. Usually this means use in an expression that
provides an input field of the using specifier in a plot, splot, fit, or stats command. However the scope of
the functions is actually the full clause of the plot command, including for example use of columnhead in
constructing the plot title.

Column The column(x) function may be used only in the using specifier of a plot, splot, fit, or stats
command. It evaluates to the numerical value of the content of column x. If the column is expected to hold
a string, use instead stringcolumn(x) or timecolumn(x, "timeformat"). See plot datafile using (p. 139),
stringcolumn (p. 51), timecolumn (p. 49).

Columnhead The columnhead(x) function may only be used as part of a plot, splot, or stats command.
It evaluates to a string containing the content of column x in the first line of a data file. This is typically
used to extract the column header for use in a plot title. See plot datafile using (p. 139). Example:
set datafile columnheader
plot for [i=2:4] DATA using 1:i title columnhead(i)

Stringcolumn The stringcolumn(x) function may be used only in the using specification of a data plot
or fit command. It returns the content of column x as a string. strcol(x) is shorthand for stringcolumn(x).
If the string is to be interpreted as a time or date, use instead timecolumn(x, "timeformat"). See plot
datafile using (p. 139).

Valid The valid(x) function may be used only in expressions that are part of a using specification. It
can be used to detect explicit NaN values or unexpected garbage in a field of the input stream, perhaps to
substitute a default value or to prevent further arithmetic operations using NaN. Both "missing" and NaN
(not-a-number) data values are considered to be invalid, but it is important to note that if the program
recognizes that a field is truly missing or contains a "missing" flag then the input line is discarded before
the expression invoking valid() would be called. See plot datafile using (p. 139), missing (p. 166).

Example:
Treat an unrecognized bin value as contributing some constant
prior expectation to the bin total rather than ignoring it.
plot DATA using 1 : (valid(2) ? $2 : prior) smooth unique

Value

B = value("A") is effectively the same as B = A, where A is the name of a user-defined variable. This is
useful when the name of the variable is itself held in a string variable. See user-defined variables (p. 56).
It also allows you to read the name of a variable from a data file. If the argument is a numerical expression,
value() returns the value of that expression. If the argument is a string that does not correspond to a
currently defined variable, value() returns NaN.

52 gnuplot 5.5

Counting and extracting words

word("string",n) returns the nth word in string. For example, word("one two three",2) returns the
string "two".

words("string") returns the number of words in string. For example, words(" a b ¢ d") returns 4.

The word and words functions provide limited support for quoted strings, both single and double quotes
can be used:
print words("\"double quotes\" or ’single quotes’") # 3

A starting quote must either be preceded by a white space, or start the string. This means that apostrophes
in the middle or at the end of words are considered as parts of the respective word:
print words("Alexis’ phone doesn’t work") # 4

Escaping quote characters is not supported. If you want to keep certain quotes, the respective section must
be surrounded by the other kind of quotes:

s = "Keep \"’single quotes’\" or ’\"double quotes\"’"

print word(s, 2) # ’single quotes’

print word(s, 4) # "double quotes"

Note, that in this last example the escaped quotes are necessary only for the string definition.

split("string", "sep") uses the character sequence in "sep" as a field separator to split the content of
"string" into individual fields. It returns an array of strings, each corresponding to one field of the original
string. The second parameter "sep" is optional. If "sep" is omitted or if it contains a single space character
the fields are split by any amount of whitespace (space, tab, formfeed, newline, return). Otherwise the full
sequence of characters in "sep" must be matched.

The three examples below each produce an array ["A", "B", "C", "D" |
tl = split("A B C D")
t2 split("ABCD", " ")
t3 = split("A;B;C;D", ";")

However the command

t4 = split("A;B; C;D", "; ")
produces an array containing only two strings ["A;B", "C;D" | because the two-character field separator
sequence "; " is found only once.

Note: Breaking the string into an array of single characters using an empty string for sep is not currently
implemneted. You can instead accomplish this using single character substrings: Array[i] = "string"[i:i]

join(array, "sep") concatenates the string elements of an array into a single string containing fields de-
limited by the character sequence in "sep". Non-string array elements generate an empty field. Example:

array A= ["A" R ngn . 7’ "E"]
print join(A,";")
A;B;;E
trim(" padded string ") returns the original string stripped of leading and trailing whitespace. This is

useful for string comparisons of input data fields that may contain extra whitespace. For example
plot FOO using 1:(trim(strcol(3)) eq "A" 7 $2 : NaN)

Zeta

zeta(s) is the Riemann zeta function with complex domain and range. C(s) =22k

This implementation uses the polynomial series described in algorithm 3 of P. Borwein [2000] Canadian
Mathematical Society Conference Proceedings. The nominal precision is 1.e-16 over the complex plane.
However note that this does not guarantee that non-trivial zeros of the zeta function will evaluate exactly
to 0.

gnuplot 5.5 593

Operators

The operators in gnuplot are the same as the corresponding operators in the C programming language,
except that all operators accept integer, real, and complex arguments, unless otherwise noted. The **
operator (exponentiation) is supported, as in FORTRAN.

Unary

The following is a list of all the unary operators and their usages:

] Unary Operators

Symbol Example Explanation
- -a unary minus
+a unary plus (no-operation)
- ~a * one’s complement
! la * logical negation
! al * factorial
$ $3 * data column in ‘using’ specifier
| [A] cardinality of array A

(*) Starred explanations indicate that the operator requires an integer argument.

Operator precedence is the same as in Fortran and C. As in those languages, parentheses may be used to
change the order of operation. Thus -2**2 = -4, but (-2)**2 = 4.

The factorial operator returns an integer when N! is sufficiently small (N <= 20 for 64-bit integers). It
returns a floating point approximation for larger values of N.

The cardinality operator |...| returns the number of elements |A| in array A. It returns the number of data
lines |$DATA| when applied to datablock $DATA.

Binary

The following is a list of all the binary operators and their usages:

54 gnuplot 5.5

’ Binary Operators

Symbol Example FExplanation

*% ax*xxb exponentiation

* a*b multiplication

/ a/b division

% a’%b * modulo

+ a+b addition

- a-b subtraction

== a== equality

1= al=b inequality

< a<b less than

<= a<=b less than or equal to

> a>b greater than

>= a>=b greater than or equal to

<< Oxff<<1 left shift unsigned

>> Oxff>>1 right shift unsigned
akb * bitwise AND

- a’b * bitwise exclusive OR

I alb * bitwise inclusive OR

&& a&&b * logical AND

Il allb * logical OR

= a=>b assignment

s (a,b) serial evaluation

. A.B string concatenation

eq A eq B string equality

ne A ne B string inequality

(*) Starred explanations indicate that the operator requires integer arguments. Capital letters A and B
indicate that the operator requires string arguments.

Logical AND (&&) and OR (||) short-circuit the way they do in C. That is, the second && operand is not
evaluated if the first is false; the second || operand is not evaluated if the first is true.

Serial evaluation occurs only in parentheses and is guaranteed to proceed in left to right order. The value of
the rightmost subexpression is returned.

Ternary

There is a single ternary operator:

] Ternary Operator

Symbol Example FExplanation
?: a%b:c ternary operation

The ternary operator behaves as it does in C. The first argument (a), which must be an integer, is evaluated.
If it is true (non-zero), the second argument (b) is evaluated and returned; otherwise the third argument (c)
is evaluated and returned.

The ternary operator is very useful both in constructing piecewise functions and in plotting points only when
certain conditions are met.

Examples:

Plot a function that is to equal sin(x) for 0 <=x < 1, 1/x for 1 <= x < 2, and undefined elsewhere:

f(x) = 0<=x && x<1 7 sin(x) : 1<=x && x<2 7 1/x : 1/0
plot f(x)

gnuplot 5.5 55

Note that gnuplot quietly ignores undefined values, so the final branch of the function (1/0) will produce
no plottable points. Note also that f(x) will be plotted as a continuous function across the discontinuity if
a line style is used. To plot it discontinuously, create separate functions for the two pieces. (Parametric
functions are also useful for this purpose.)

For data in a file, plot the average of the data in columns 2 and 3 against the datum in column 1, but only
if the datum in column 4 is non-negative:

plot ’file’ using 1:($4<0 7 1/0 : ($2+$3)/2)

For an explanation of the using syntax, please see plot datafile using (p. 139).

Summation

A summation expression has the form
sum [<var> = <start> : <end>] <expression>

<var> is treated as an integer variable that takes on successive integral values from <start> to <end>. For
each of these, the current value of <expression> is added to a running total whose final value becomes the
value of the summation expression. Examples:
print sum [i=1:10] i
55.
Equivalent to plot ’data’ using 1:($2+$3+$4+$5+$6+...)
plot ’data’ using 1 : (sum [col=2:MAXCOL] column(col))

It is not necessary that <expression> contain the variable <var>. Although <start> and <end> can be
specified as variables or expressions, their value cannot be changed dynamically as a side-effect of carrying
out the summation. If <end> is less than <start> then the value of the summation is zero.

Gnuplot-defined variables

Gnuplot maintains a number of read-only variables that reflect the current internal state of the program and
the most recent plot. These variables begin with the prefix "GPVAL_". Examples include GPVAL_TERM,
GPVAL_X_MIN, GPVAL_X_MAX, GPVAL_Y_MIN. Type show variables all to display the complete list
and current values. Values related to axes parameters (ranges, log base) are values used during the last plot,
not those currently set.

Example: To calculate the fractional screen coordinates of the point [X,Y]
GRAPH_X = (X - GPVAL_X_MIN) / (GPVAL_X_MAX - GPVAL_X_MIN)
GRAPH_Y = (Y - GPVAL_Y_MIN) / (GPVAL_Y_MAX - GPVAL_Y_MIN)
SCREEN_X = GPVAL_TERM_XMIN + GRAPH_X * (GPVAL_TERM_XMAX - GPVAL_TERM_XMIN)
SCREEN_Y = GPVAL_TERM_YMIN + GRAPH_Y * (GPVAL_TERM_YMAX - GPVAL_TERM_YMIN)
FRAC_X = SCREEN_X * GPVAL_TERM_SCALE / GPVAL_TERM_XSIZE
FRAC_Y = SCREEN_Y * GPVAL_TERM_SCALE / GPVAL_TERM_YSIZE

The read-only variable GPVAL_ERRNO is set to a non-zero value if any gnuplot command terminates early
due to an error. The most recent error message is stored in the string variable GPVAL_ERRMSG. Both
GPVAL_ERRNO and GPVAL_ERRMSG can be cleared using the command reset errors.

Interactive terminals with mouse functionality maintain read-only variables with the prefix "MOUSE_".
See mouse variables (p. 67) for details.

The fit mechanism uses several variables with names that begin "FIT_". It is safest to avoid using such
names. When using set fit errorvariables, the error for each fitted parameter will be stored in a variable
named like the parameter, but with "_err" appended. See the documentation on fit (p. 110) and set fit
(p. 172) for details.

See user-defined variables (p. 56), reset errors (p. 152), mouse variables (p. 67), and fit (p. 110).

56 gnuplot 5.5

User-defined variables and functions

New user-defined variables and functions of one through twelve variables may be declared and used anywhere,
including on the plot command itself.

User-defined function syntax:

<func-name>(<dummyl> {,<dummy2>} ... {,<dummy12>}) = <expression>

where <expression> is defined in terms of <dummyl> through <dummy12>. This form of function def-
inition is limited to a single line. More complicated multi-line functions can be defined using the function
block mechanism (new in version 5.5). See function blocks (p. 118).

User-defined variable syntax:

<variable-name> = <constant-expression>

Examples:
w =2
q = floor(tan(pi/2 - 0.1))

f(x) = sin(w*x)

sinc(x) = sin(pi*x)/(pi*x)

delta(t) = (t == 0)

ramp(t) = (¢t >0) 7t : 0

min(a,b) = (a<b) ?7a: b

comb(n,k) = n!/(k!'*(n-k)!)

len3d(x,y,z) = sqrt(x*x+y*y+z*z)

plot f(x) = sin(x*a), a = 0.2, f(x), a = 0.4, £(x)

file = "mydata.inp"
file(n) = sprintf("run_%d.dat",n)

The final two examples illustrate a user-defined string variable and a user-defined string function.
Note that the variables pi (3.14159...) and NaN (IEEE "Not a Number") are already defined. You can
redefine these to something else if you really need to. The original values can be recovered by setting:

NaN
pi

GPVAL_NaN
GPVAL_pi

Other variables may be defined under various gnuplot operations like mousing in interactive terminals or
fitting; see gnuplot-defined variables (p. 55) for details.

You can check for existence of a given variable V by the exists("V") expression. For example

a =10
if (exists("a")) print "a is defined"
if (lexists("b")) print "b is not defined"

Valid names are the same as in most programming languages: they must begin with a letter, but subsequent
characters may be letters, digits, or "_".

Each function definition is made available as a special string-valued variable with the prefix 'GPFUN_".
Example:

set label GPFUN_sinc at graph .05,.95

See show functions (p. 254), functions (p. 143), gnuplot-defined variables (p. 55), macros (p. 71),
value (p. 51).

gnuplot 5.5 57

Arrays

Arrays are implemented as indexed lists of user variables. The elements in an array are not limited to a single
type of variable. Arrays must be created explicitly before being referenced. The size of an array cannot be
changed after creation. All elements are initially undefined. In most places an array element can be used
instead of a named user variable.

The cardinality (number of elements) of array A is given by the expression |A].

Examples:
array A[6]
Al1] =1
A[2] = 2.0
A[3] = {3.0, 3.0}
A[4] = "four"
A[6] = A[2]*x3

array B[6] = [1, 2.0, A[3], "four", , B[2]*x*3]

do for [i=1:6] { print A[i], B[i] }
11
2.0 2.0
{3.0, 3.0} {3.0, 3.0%}
four four
<undefined> <undefined>
8.0 8.0

Note: Arrays and variables share the same namespace. For example, assignment of a string variable named
FOO will destroy any previously created array with name FOO.

The name of an array can be used in a plot, splot, fit, or stats command. This is equivalent to providing
a file in which column 1 holds the array index (from 1 to size), column 2 holds the value of real(A[i]) and
column 3 holds the value of imag(A[i]).

Example:

array A[200]
do for [i=1:200] { A[i] = sin(i * pi/100.) }
plot A title "sin(x) in centiradians"

When plotting the imaginary component of complex array values, it may be referenced either as imag(A[$1])
or as $3. These two commands are equivalent

plot A using (real(A[$1])) : (imag(A[$11))
plot A using 2:3

Array functions

Starting with gnuplot version 5.5, an array can be passed to a function or returned by a function. For
example a simple dot-product function acting on two equal-sized numerical arrays could be defined:

dot(A,B) = (|A] != |B|) ? NaN : sum [i=1:[A|] A[i] * B[i]

Built-in functions that return an array include the slice operation array[min:max] and the index retrieval
function index(Array,value).
T = split("fA B CD E F")
U = T[3:4]
print T
[IIAll’ |IBI|’ ||Cl|’ ||Dl|’ ||El|’ IIFII]

58 gnuplot 5.5

print U
[IICII’ |IDI|]
print index(T, "D")
4

Note that T and U in this example are now arrays, whether or not they had been previously declared.

Array indexing

Array indices run from 1 to N for an array with N elements. Element i of array A is accessed by A[i]. The
built-in function index(Array, <value>) returns an integer i such that A[i] is equal to <value>, where
<value> may be any expression that evaluates to a number (integer, real, or complex) or a string. The array
element must match in both type and value. A return of 0 indicates that no match was found.

array A = [4.0, 4, "4"]
print index(A, 4)

2

print index(A, 2.+2.)
1

print index(A, "D4"[2:2])
3

Fonts

Gnuplot does not provide any fonts of its own. It relies on external font handling, the details of which
unfortunately vary from one terminal type to another. Brief documentation of font mechanisms that apply
to more than one terminal type is given here. For information on font use by other individual terminals, see
the documentation for that terminal.

Although it is possible to include non-alphabetic symbols by temporarily switching to a special font, e.g. the
Adobe Symbol font, the preferred method is now to choose UTF-8 encoding and treat the symbol like any
other character. Alternatively you can specify the unicode entry point for the desired symbol as an escape
sequence in enhanced text mode. See encoding (p. 171), unicode (p. 40), locale (p. 191), and escape
sequences (p. 40).

Cairo (pdfcairo, pngcairo, epscairo, wxt terminals)

Some terminals, including all the cairo-based terminals, access fonts via the fontconfig system library. Please
see the fontconfig user manual.

It is usually sufficient in gnuplot to request a font by a generic name and size, letting fontconfig substitute
a similar font if necessary. The following will probably all work:

set term pdfcairo font "samns,12"
set term pdfcairo font "Times,12"
set term pdfcairo font "Times-New-Roman,12"

Gd (png, gif, jpeg, sixel terminals)

Font handling for the png, gif, jpeg, and sixelgd terminals is done by the libgd library. At a minimum it
provides five basic fonts named tiny, small, medium, large, and giant that cannot be scaled or rotated.
Use one of these keywords instead of the font keyword. E.g.

set term png tiny

http://fontconfig.org/fontconfig-user.html

gnuplot 5.5 99

On many systems libgd can also use generic font handling provided by the fontconfig tools (see fontconfig
(p. 58)).

On most systems without fontconfig, libgd provides access to Adobe fonts (*.pfa *.pfb) and to TrueType
fonts (*.ttf). You must give the name of the font file, not the name of the font inside it, in the form
"<face> {,<size>}". <face> is either the full pathname to the font file, or the first part of a filename
in one of the directories listed in the GDFONTPATH environmental variable. That is, ’set term png font
"Face"’” will look for a font file named either <somedirectory>/Face.ttf or <somedirectory>/Face.pfa. For
example, if GDFONTPATH contains /usr/local/fonts/ttf: /usr/local/fonts/pfa then the following pairs
of commands are equivalent

set term png font "arial"

set term png font "/usr/local/fonts/ttf/arial.ttf"

set term png font "Helvetica"

set term png font "/usr/local/fonts/pfa/Helvetica.pfa"

To request a default font size at the same time:
set term png font "arial,11"

Both TrueType and Adobe Type 1 fonts are fully scalable and rotatable. If no specific font is requested in
the "set term" command, gnuplot checks the environmental variable GNUPLOT_DEFAULT_GDFONT.

Postscript (also encapsulated postscript *.eps)

PostScript font handling is done by the printer or viewing program. Gnuplot can create valid PostScript or
encapsulated PostScript (*.eps) even if no fonts at all are installed on your computer. Gnuplot simply refers
to the font by name in the output file, and assumes that the printer or viewing program will know how to
find or approximate a font by that name.

All PostScript printers or viewers should know about the standard set of Adobe fonts Times-Roman,
Helvetica, Courier, and Symbol. It is likely that many additional fonts are also available, but the specific
set depends on your system or printer configuration. Gnuplot does not know or care about this; the output
* ps or *.eps files that it creates will simply refer to whatever font names you request.

Thus

set term postscript eps font "Times-Roman, 12"

will produce output that is suitable for all printers and viewers.

On the other hand
set term postscript eps font "Garamond-Premier-Pro-Italic"

will produce a valid PostScript output file, but since it refers to a specialized font only some printers or
viewers will be able to display the exact font that was requested. Most will substitute a different font.

However, it is possible to embed a specific font in the output file so that all printers will be able to use it.
This requires that the a suitable font description file is available on your system. Note that some font files
require specific licensing if they are to be embedded in this way. See postscript fontfile (p. 303) for more
detailed description and examples.

Glossary

As gnuplot has evolved over more than 30 years, the meaning of certain words used in commands and in
the documentation may have diverged from current common usage. This section explains how some of these
terms are used in gnuplot.

The term "terminal" refers to an output mode, not to the thing you are typing on. For example, the
command set terminal pdf means that subsequent plotting commands will produce pdf ouput. Usually

60 gnuplot 5.5

you would want to accompany this with a set output "filename" command to control where the pdf output
is written.

A "page" or "screen" or "canvas" is the entire area addressable by gnuplot. On a desktop it is a full
window; on a plotter, it is a single sheet of paper.

When discussing data files, the term "record" denotes a single line of text in the file, that is, the characters
between newline or end-of-record characters. A "point" is the datum extracted from a single record. A
"block" of data is a set of consecutive records delimited by blank lines. A line, when referred to in the
context of a data file, is a subset of a block. Note that the term "data block" may also be used to refer to a
named block of inline data (see datablocks (p. 60)).

Inline data and datablocks

There are two mechanisms for embedding data into a stream of gnuplot commands. If the special filename
- appears in a plot command, then the lines immediately following the plot command are interpreted as
inline data. See special-filenames (p. 138). Data provided in this way can only be used once, by the plot
command it follows.

The second mechanism defines a named data block as a here-document. The named data is persistent and
may be referred to by more than one plot command. Example:

$Mydata << EOD

11 22 33 first line of data

44 55 66 second line of data

comments work just as in a data file

77 88 99

EOD

stats $Mydata using 1:3

plot $Mydata using 1:3 with points, $Mydata using 1:2 with impulses

Data block names must begin with a $ character, which distinguishes them from other types of persistent
variables. The end-of-data delimiter (EOD in the example) may be any sequence of alphanumeric characters.

The storage associated with named data blocks can be released using undefine command. undefine $*
frees all named data blocks at once.

Iteration

gnuplot supports command iteration and block-

structured if/else/while/do constructs. See if (p. 120),
while (p. 267), and do (p. 109). Simple iteration is
possible inside plot or set commands. See plot for

(p. 145). General iteration spanning multiple com-
mands is possible using a block construct as shown be-

low. For a related new feature, see the summation
(p. 55) expression type. Here is an example using sev-
eral of these new syntax features:

set multiplot layout 2,2
fourier(k, x) = sin(3./2xk)/k * 2./3*cos(k*x)
do for [power = 0:3] {
TERMS = 10**power
set title sprintf("),g term Fourier series",TERMS)
plot 0.5 + sum [k=1:TERMS] fourier(k,x) notitle

1 term Fourier series 10 term Fourier series

100 term Fourier series 1000 term Fourier series

gnuplot 5.5 61

unset multiplot

Iteration is controlled by an iteration specifier with syntax
for [<var> in "string of N elements"]

or
for [<var> = <start> : <end> { : <increment> }]

In the first case <var> is a string variable that successively evaluates to single-word substrings 1 to N of
the string in the iteration specifier. In the second case <start>, <end>, and <increment> are integers or
integer expressions.

The scope of the iteration variable is private to that iteration. See scope (p. 69). You cannot permanently
change the value of the iteration variable inside the iterated clause. If the iteration variable has a value prior
to iteration, that value will be retained or restored at the end of the iteration. For example, the following
commands will print 12345678910 A.

i="A"

do for [i=1:10] { print i; i=10; }

print i

Linetypes, colors, and styles

In older gnuplot versions, each terminal type provided a set of distinct "linetypes" that could differ in
color, in thickness, in dot/dash pattern, or in some combination of color and dot/dash. These colors and
patterns were not guaranteed to be consistent across different terminal types although most used the color
sequence red/green/blue/magenta/cyan/yellow. You can select this old behaviour via the command set
colorsequence classic, but by default gnuplot version 5 uses a terminal-independent sequence of 8 colors.

You can further customize the sequence of linetype properties interactively or in an initialization file. See
set linetype (p. 190). Several sample initialization files are provided in the distribution package.

The current linetype properties for a particular terminal can be previewed by issuing the test command
after setting the terminal type.

Successive functions or datafiles plotted by a single command will be assigned successive linetypes in the
current default sequence. You can override this for any individual function, datafile, or plot element by
giving explicit line properties in the plot command.

Examples:
plot "foo", "bar" # plot two files using linetypes 1, 2
plot sin(x) linetype 4 # use linetype color 4

In general, colors can be specified using named colors, rghb (red, green, blue) components, hsv (hue, satura-
tion, value) components, or a coordinate along the current pm3d palette. The keyword linecolor may be
abbreviated to lc.

Examples:
plot sin(x) lc rgb "violet" # use one of gnuplot’s named colors
plot sin(x) lc rgb "#FFOOFF" # explicit RGB triple in hexadecimal
plot sin(x) lc palette cb -45 # whatever color corresponds to -45
in the current cbrange of the palette
#

plot sin(x) lc palette frac 0.3 fractional value along the palette

See colorspec (p. 62), show colornames (p. 254), hsv (p. 45), set palette (p. 206), cbrange
(p- 253). See also set monochrome (p. 194).

Linetypes also have an associated dot-dash pattern although not all terminal types are capable of using it.
Gnuplot version 5 allows you to specify the dot-dash pattern independent of the line color. See dashtype

(p. 64).

62 gnuplot 5.5

Colorspec

Many commands allow you to specify a linetype with an explicit color.
Syntax:

. {linecolor | 1lc} {"colorname" | <colorspec> | <n>}
. {textcolor | tc} {<colorspec> | {linetype | 1t} <n>}
. {fillcolor | fc} {<colorspec> | linetype <n> | linestyle <n>}

where <colorspec> has one of the following forms:

rgbcolor "colorname" # e.g. "blue"

rgbcolor "OxRRGGBB" # string containing hexadecimal constant
rgbcolor "OxAARRGGBB" # string containing hexadecimal constant
rgbcolor "#RRGGBB" # string containing hexadecimal in x11 format
rgbcolor "#AARRGGBB" # string containing hexadecimal in x11 format
rgbcolor <integer val> # integer value representing AARRGGBB
rgbcolor variable # integer value is read from input file
palette frac <val> # <val> runs from O to 1

palette cb <value> # <val> lies within cbrange

palette z

palette <colormap> # use named colormap rather than current palette
variable # color index is read from input file

bgnd # background color

black

The "<n>" is the linetype number the color of which is used, see test (p. 264).

"colorname" refers to one of the color names built in to gnuplot. For a list of the available names, see show
colornames (p. 254).

Hexadecimal constants can be given in quotes as "#RRGGBB" or "0xRRGGBB", where RRGGBB rep-
resents the red, green, and blue components of the color and must be between 00 and FF. For example,
magenta = full-scale red + full-scale blue could be represented by "OxFFOOFF", which is the hexadecimal
representation of (255 << 16) + (0 << 8) + (255).

"#AARRGGBB" represents an RGB color with an alpha channel (transparency) value in the high bits. An
alpha value of 0 represents a fully opaque color; i.e., "#00RRGGBB" is the same as "#RRGGBB". An
alpha value of 255 (FF) represents full transparency.

For a callable function that converts any of these forms to a 32bit integer representation of the color, see
expressions functions rgbcolor (p. 45).

The color palette is a linear gradient of colors that smoothly maps a single numerical value onto a particular
color. Two such mappings are always in effect. palette frac maps a fractional value between 0 and 1 onto
the full range of the color palette. palette cb maps the range of the color axis onto the same palette. See
set cbrange (p. 253). See also set colorbox (p. 164). You can use either of these to select a constant
color from the current palette.

"palette z" maps the z value of each plot segment or plot element into the cbrange mapping of the palette.
This allows smoothly-varying color along a 3d line or surface. It also allows coloring 2D plots by palette
values read from an extra column of data (not all 2D plot styles allow an extra column). There are two
special color specifiers: bgnd for background color and black.

Background color

Most terminals allow you to set an explicit background color for the plot. The special linetype bgnd will
draw in this color, and bgnd is also recognized as a color. Examples:

This will erase a section of the canvas by writing over it in the

gnuplot 5.5 63

background color

set term wxt background rgb "gray75"

set object 1 rectangle from x0,y0 to x1,yl fillstyle solid fillcolor bgnd
Draw an "invisible" line at y=0, erasing whatever was underneath

plot O 1t bgnd

Linecolor variable

Ic variable tells the program to use the value read from one column of the input data as a linetype index,
and use the color belonging to that linetype. This requires a corresponding additional column in the using
specifier. Text colors can be set similarly using tc variable.

Examples:
Use the third column of data to assign colors to individual points
plot ’data’ using 1:2:3 with points lc variable

A single data file may contain multiple sets of data, separated by two
blank lines. Each data set is assigned as index value (see ‘index‘)

that can be retrieved via the ‘using‘ specifier ‘column(-2)°.

See ‘pseudocolumns‘. This example uses to value in column -2 to

draw each data set in a different line color.

plot ’data’ using 1:2:(column(-2)) with lines lc variable

Palette

Syntax
. {Iclfcltc} palette {z}
. {1clfcltc} palette frac <fraction>
. {1clfcltc} palette cb <fixed z-value>
. fc palette <colormap>

The palette defines a range of colors with gray values between 0 and 1. palette frac <fraction> selects
the color with gray value <fraction>.

palette cb <z-value> selects the single color whose fractional gray value is (z - cbmin) / (cbmax - cbmin).

palette and palette z both map the z coordinate of the plot element being colored onto the current palette.
If z is outside cbrange it is by default mapped to palette fraction 0 or palette franction 1. If the option set
pm3d noclipcb is set, then quadrangles in a pm3d plot whose z values are out of range will not be drawn
at all.

fillcolor palette <colormap> maps the z coordinate of a plot element onto a previously saved named col-
ormap instead of using the current palette. See set colormap (p. 159). This option is EXPERIMENTAL.
Details may change. If the colormap has a separate range associated with it, that range is used to map z
values analogous to the use of cbrange to map the standard palette. If there is no separate range for this
colormap then cbrange is used.

Rgbcolor variable

You can assign a separate color for each data point, line segment, or label in your plot. lc rgbcolor variable
tells the program to read RGB color information for each line in the data file. This requires a corresponding
additional column in the using specifier. The extra column is interpreted as a 24-bit packed RGB triple.
If the value is provided directly in the data file it is easiest to give it as a hexadecimal value (see rgbcolor
(p. 45)). Alternatively, the using specifier can contain an expression that evaluates to a 24-bit RGB color
as in the example below. Text colors are similarly set using tc rgbcolor variable.

Example:

64 gnuplot 5.5

Place colored points in 3D at the x,y,z coordinates corresponding to
their red, green, and blue components

rgb(r,g,b) = 65536 * int(r) + 256 * int(g) + int(b)

splot "data" using 1:2:3:(rgb($1,$2,$3)) with points lc rgb variable

Dashtype

In gnuplot version 5 the dash pattern (dashtype) is a separate property associated with each line, analogous
to linecolor or linewidth. It is not necessary to place the current terminal in a special mode just to draw
dashed lines. Le. the command set term <termname> {solid|dashed} is now ignored. If backwards
compatibility with old scripts written for version 4 is required, the following lines can be used instead:

if (GPVAL_VERSION >= 5.0) set for [i=1:9] linetype i dashtype i
if (GPVAL_VERSION < 5.0) set termoption dashed

All lines have the property dashtype solid unless you specify otherwise. You can change the default for a
particular linetype using the command set linetype so that it affects all subsequent commands, or you can
include the desired dashtype as part of the plot or other command.

Syntax:

dashtype N # predefined dashtype invoked by number
dashtype "pattern" # string containing a combination of the characters
dot (.) hyphen (-) underscore(_) and space.
dashtype (sl,el,s2,e2,s3,e3,s4,e4) # dash pattern specified by 1 to 4
numerical pairs <solid length>, <emptyspace length>

Example:

Two functions using linetype 1 but distinguished by dashtype
plot f1(x) with lines 1t 1 dt solid, f2(x) with lines 1t 1 dt 3

Some terminals support user-defined dash patterns in addition to whatever set of predefined dash patterns
they offer.

Examples:

plot f(x) dt 3

plot f(x) dt ".. "

plot f(x) dt (2,5,2,15)
set dashtype 11 (2,4,4,7)
plot f(x) dt 11

use terminal-specific dash pattern 3
construct a dash pattern on the spot
numerical representation of the same pattern
define new dashtype to be called by index
plot using our new dashtype

H O H O H

If you specify a dash pattern using a string the program will convert this to a sequence of <solid>,<empty>
pairs. Dot "." becomes (2,5), dash "-" becomes (10,10), underscore "_" becomes (20,10), and each space
character " " adds 10 to the previous <empty> value. The command show dashtype will show both the
original string and the converted numerical sequence.

Linestyles vs linetypes

A linestyle is a temporary association of properties linecolor, linewidth, dashtype, and pointtype. It is
defined using the command set style line. Once you have defined a linestyle, you can use it in a plot
command to control the appearance of one or more plot elements. In other words, it is just like a linetype
except for its lifetime. Whereas linetypes are permanent (they last until you explicitly redefine them),
linestyles last until the next reset of the graphics state.

Examples:

gnuplot 5.5 65

define a new line style with terminal-independent color cyan,

linewidth 3, and associated point type 6 (a circle with a dot in it).
set style line 5 1t rgb "cyan" 1lw 3 pt 6

plot sin(x) with linespoints 1ls 5 # user-defined line style 5

Special linetypes

A few special (non-numerical) linetypes are recognized.
It black specifies a solid black line.
It bgnd specifies a solid line with the background color of the current terminal. See background (p. 62).

It nodraw skips drawing the line altogether. This is useful in conjunction with plot style linespoints. It
allows you to suppress the line component of the plot while retaining point properties that are available only
in this plot style. For example

plot f(x) with linespoints 1t nodraw pointinterval -3

will draw only every third point and will isolate it by placing a small circle of background color underneath
it. See linespoints (p. 94). 1t nodraw may also be used to suppress a particular set of lines that would
otherwise be drawn automatically. For example you could suppress certain contour levels in a contour plot
by setting their linetype to nodraw.

Layers

A gnuplot plot is built up by drawing its various components in a fixed order. This order can be modified by
assigning some components to a specific layer using the keywords behind, back, or front. For example, to
replace the background color of the plot area you could define a colored rectangle with the attribute behind.

set object 1 rectangle from graph 0,0 to graph 1,1 fc rgb "gray" behind

The order of drawing is

behind

back

the plot itself

the plot legend (‘key‘)
front

Within each layer elements are drawn in the order

grid, axis, and border elements

pixmaps in numerical order

objects (rectangles, circles, ellipses, polygons) in numerical order
labels in numerical order

arrows in numerical order

In the case of multiple plots on a single page (multiplot mode) this order applies separately to each component
plot, not to the multiplot as a whole.

An exception to this is that several TeX-based terminals (e.g. pslatex, cairolatex) accumulate all text
elements in one output stream and graphics in a separate output stream; the text and graphics are then
combined to yield the final figure. In general this leaves each text element either completely behind or
completely in front of the graphics.

66 gnuplot 5.5

Mouse input

Many terminals allow interaction with the current plot using the mouse. Some also support the definition
of hotkeys to activate pre-defined functions by hitting a single key while the mouse focus is in the active
plot window. It is even possible to combine mouse input with batch command scripts, by invoking the
command pause mouse and then using the mouse variables returned by mouse clicking as parameters for
subsequent scripted actions. See bind (p. 66) and mouse variables (p. 67). See also the command set
mouse (p. 194).

Bind

Syntax:
bind {allwindows} [<key-sequence>] ["<gnuplot commands>"]
bind <key-sequence> ""
reset bind

The bind allows defining or redefining a hotkey, i.e. a sequence of gnuplot commands which will be executed
when a certain key or key sequence is pressed while the driver’s window has the input focus. Note that bind
is only available if gnuplot was compiled with mouse support and it is used by all mouse-capable terminals.
A user-specified binding supersedes any builtin bindings, except that <space> and ’q’ cannot normally be
rebound. For an exception, see bind space (p. 67).

Mouse button bindings are only active in 2D plots.

You get the list of all hotkeys by typing show bind or bind or by typing the hotkey 'h’ in the graph window.
Key bindings are restored to their default state by reset bind.

Note that multikey-bindings with modifiers must be given in quotes.

Normally hotkeys are only recognized when the currently active plot window has focus. bind allwindows
<key> ... (short form: bind all <key> ...) causes the binding for <key> to apply to all gnuplot plot
windows, active or not. In this case gnuplot variable MOUSE_KEY_WINDOW is set to the ID of the
originating window, and may be used by the bound command.

Examples:
- set bindings:

bind a "replot"

bind "ctrl-a" "plot x*x"

bind "ctrl-alt-a" ’print "great"’

bind Home "set view 60,30; replot"

bind all Home ’print "This is window " ,MOUSE_KEY_WINDOW’

- show bindings:

bind "ctrl-a" # shows the binding for ctrl-a
bind # shows all bindings
show bind # show all bindings

- remove bindings:

bind "ctrl-alt-a" "" # removes binding for ctrl-alt-a
(note that builtins cannot be removed)
reset bind # installs default (builtin) bindings

- bind a key to toggle something;:
v=0
bind "ctrl-r" "v=v+1l;if (v%2)set term x11 noraise; else set term x11 raise"

gnuplot 5.5 67

Modifiers (ctrl / alt) are case insensitive, keys not:
ctrl-alt-a == CtRl-alT-a
ctrl-alt-a != ctrl-alt-A

List of modifiers (alt == meta):
ctrl, alt, shift (only valid for Buttonl Button2 Button3)

List of supported special keys:
"BackSpace", "Tab", "Linefeed", "Clear", "Return", "Pause", "Scroll_Lock",
"Sys_Req", "Escape", "Delete", "Home", "Left", "Up", "Right", "Down",
"PageUp", "PageDown", "End", "Begin",

"KP_Space", "KP_Tab", "KP_Enter", "KP_F1", "KP_F2", "KP_F3", "KP_F4",
"KP_Home", "KP_Left", "KP_Up", "KP_Right", "KP_Down", "KP_PageUp",
"KP_PageDown", "KP_End", "KP_Begin", "KP_Insert", "KP_Delete", "KP_Equal",
"KP_Multiply", "KP_Add", "KP_Separator", "KP_Subtract", "KP_Decimal",
"KP_Divide",

lIKP_lII - IIKP_QII , IIFlIl —_ IIF12II

The following are window events rather than actual keys
"Buttonl" "Button2" "Button3" "Close"

See also help for mouse (p. 194).

Bind space

If gnuplot was built with configuration option —enable-raise-console, then typing <space> in the plot window
raises gnuplot’s command window. Maybe. In practice this is highly system-dependent. This hotkey can be
changed to ctrl-space by starting gnuplot as 'gnuplot -ctrlq’, or by setting the XResource ’gnuplot*ctrlq’.

Mouse variables

When mousing is active, clicking in the active window will set several user variables that can be accessed
from the gnuplot command line. The coordinates of the mouse at the time of the click are stored in MOUSE_X
MOUSE_Y MOUSE_X2 and MOUSE_Y2. The mouse button clicked, and any meta-keys active at that time,
are stored in MOUSE_BUTTON MOUSE_SHIFT MOUSE_ALT and MOUSE_CTRL. These variables are
set to undefined at the start of every plot, and only become defined in the event of a mouse click in the
active plot window. To determine from a script if the mouse has been clicked in the active plot window, it
is sufficient to test for any one of these variables being defined.

plot ’something’

pause mouse

if (exists("MOUSE_BUTTON")) call ’something_else’; \

else print "No mouse click."

It is also possible to track keystrokes in the plot window using the mousing code.
plot ’something’
pause mouse keypress
print "Keystroke ", MOUSE_KEY, " at ", MOUSE_X, " ", MOUSE_Y

When pause mouse keypress is terminated by a keypress, then MOUSE_KEY will contain the ascii
character value of the key that was pressed. MOUSE_CHAR will contain the character itself as a string
variable. If the pause command is terminated abnormally (e.g. by ctrl-C or by externally closing the plot
window) then MOUSE_KEY will equal -1.

Note that after a zoom by mouse, you can read the new ranges as GPVAL_X_MIN, GPVAL_X_MAX,
GPVAL_Y_MIN, and GPVAL_Y_MAX, see gnuplot-defined variables (p. 55).

68 gnuplot 5.5

Persist

Many gnuplot terminals (aqua, pm, gt, x11, windows, wxt, ...) open separate display windows on the screen
into which plots are drawn. The persist option tells gnuplot to leave these windows open when the main
program exits. It has no effect on non-interactive terminal output. For example if you issue the command

gnuplot -persist -e ’plot sinh(x)’

gnuplot will open a display window, draw the plot into it, and then exit, leaving the display window containing
the plot on the screen. You can also specify persist or nopersist when you set a new terminal.

set term qt persist size 700,500

Depending on the terminal type, some mousing operations may still be possible in the persistent window.
However operations like zoom/unzoom that require redrawing the plot are not possible because the main
program has exited. If you want to leave a plot window open and fully mouseable after creating the plot, for
example when running gnuplot from a script file rather than interactively, see pause mouse close (p. 124).

Plotting

There are four gnuplot commands which actually create a plot: plot, splot, replot, and refresh. Other
commands control the layout, style, and content of the plot that will eventually be created. plot generates
2D plots. splot generates 3D plots (actually 2D projections, of course). replot reexecutes the previous
plot or splot command. refresh is similar to replot but it reuses any previously stored data rather than
rereading data from a file or input stream.

Each time you issue one of these four commands it will redraw the screen or generate a new page of output
containing all of the currently defined axes, labels, titles, and all of the various functions or data sources
listed in the original plot command. If instead you need to place several complete plots next to each other
on the same page, e.g. to make a panel of sub-figures or to inset a small plot inside a larger plot, use the
command set multiplot to suppress generation of a new page for each plot command.

Much of the general information about plotting can be found in the discussion of plot; information specific
to 3D can be found in the splot section.

plot operates in either rectangular or polar coordinates — see set polar (p. 218). splot operates in
Cartesian coordinates, but will accept azimuthal or cylindrical coordinates on input. See set mapping
(p- 192). plot also lets you use each of the four borders — x (bottom), x2 (top), y (left) and y2 (right) —
as an independent axis. The axes option lets you choose which pair of axes a given function or data set is
plotted against. A full complement of set commands exists to give you complete control over the scales and
labeling of each axis. Some commands have the name of an axis built into their names, such as set xlabel.
Other commands have one or more axis names as options, such as set logscale xy. Commands and options
controlling the z axis have no effect on 2D graphs.

splot can plot surfaces and contours in addition to points and/or lines. See set isosamples (p. 180) for
information about defining the grid for a 3D function. See splot datafile (p. 256) for information about
the requisite file structure for 3D data. For contours see set contour (p. 165), set cntrlabel (p. 161),
and set cntrparam (p. 161).

In splot, control over the scales and labels of the axes are the same as with plot except that there is also a
z axis and labeling the x2 and y2 axes is possible only for pseudo-2D plots created using set view map.

Plugins

The set of functions available for plotting or for evaluating expressions can be extended through a plugin
mechanism that imports executable functions from a shared library. For example, gnuplot versions through

gnuplot 5.5 69

5.4 do not provide a built-in implementation of the upper incomplete gamma function Q(a,x).
Qa,z) = ﬁ f;o teletdt . You could define an approximation directly in gnuplot like this:
Q(a,x) = 1. - igamma(a,x)

However this has inherently limited precision as igamma(a,x) approaches 1. If you need a more accurate
implementation, it would be better to provide one via a plugin (see below). Once imported, the function
can be used just as any other built-in or user-defined function in gnuplot. See import (p. 121).

The gnuplot distribution includes source code and instructions for creating a plugin library in the directory
demo/plugin. You can modify the simple example file demo_plugin.c by replacing one or more of the
toy example functions with an implementation of the function you are interested in. This could include
invocation of functions from an external mathematical library.

The demo/plugin directory also contains source for a plugin that implements Q(a,x). As noted above, this
plugin allows earlier versions of gnuplot to provide the same function uigamma as the current development
version.

import Q(a,x) from "uigamma_plugin"

uigamma(a,x) = ((x<1 || x<a) ? 1.0-igamma(a,x) : Q(a,x))

Scope of variables

Gnuplot variables are global except in the special cases listed below. There is a single persistent list of active
variables indexed by name. Assignment to a variable creates or replaces an entry in that list. The only way
to remove a variable from that list is the undefine command.

Exception 1: The scope of the variable used in an iteration specifier is private to that iteration. You cannot
permanently change the value of the iteration variable inside the iterated clause. If the iteration variable has
a value prior to iteration, that value will be retained or restored at the end of the iteration. For example,
the following commands will print 1234567 89 10 A.

i = mpn

do for [i=1:10] { print i; i=10; }

print i

Exception 2: The parameter names used in defining a function are only placeholders for the actual values
that will be provided when the function is called. For example, any current or future values of x and y are
not relevant to the definition shown here, but A must exist as a global variable when the function is later
evaluated:

func(x,y) = A + (x+y)/2.

Exception 3: Variables declared with the local command. The local qualifier (new in version 5.5) allows
optional declaration of a variable or array whose scope is limited to the execution of the code block in which
it is found. This includes load and call operations, evaluation of a function block, and the code in curly
brackets that follows an if, else, do for, or while condition. If the name of a local variable duplicates the
name of a global variable, the global variable is shadowed until exit from the local scope.

Start-up (initialization)

When gnuplot is run, it first looks for a system-wide initialization file gnuplotrc. The location of this
file is determined when the program is built and is reported by show loadpath. The program then
looks in the user’s HOME directory for a file called .gnuplot on Unix-like systems or GNUPLOT.INI
on other systems. (0OS/2 will look for it in the directory named in the environment variable GNU-
PLOT; Windows will use APPDATA). On Unix-like systems gnuplot additionally checks for the file
$XDG_CONFIG_.HOME/gnuplot/gnuplotrc. Note: The program can be configured to look first in the
current directory, but this is not recommended because it is bad security practice.

70 gnuplot 5.5

String constants, string variables, and string functions

In addition to string constants, most gnuplot commands also accept a string variable, a string expression,
or a function that returns a string. For example, the following four methods of creating a plot all result in
the same plot title:

four = "4"

graph4 = "Title for plot #4"

graph(n) = sprintf("Title for plot #%d",n)

plot ’data.4’ title "Title for plot #4"
plot ’data.4’ title graph4

plot ’data.4’ title "Title for plot #".four
plot ’data.4’ title graph(4)

Since integers are promoted to strings when operated on by the string concatenation operator (*.” character),
the following method also works:

N=4

plot ’data.’.N title "Title for plot #".N

In general, elements on the command line will only be evaluated as possible string variables if they are not
otherwise recognizable as part of the normal gnuplot syntax. So the following sequence of commands is legal,
although probably should be avoided so as not to cause confusion:

plot = "my_datafile.dat"

title = "My Title"

plot plot title title

Substrings

Substrings can be specified by appending a range specifier to any string, string variable, or string-valued
function. The range specifier has the form [begin:end], where begin is the index of the first character of the
substring and end is the index of the last character of the substring. The first character has index 1. The
begin or end fields may be empty, or contain **’, to indicate the true start or end of the original string. Thus
str[:] and str[*:*] both describe the full string str. Example:
eos = strlen(file)
if (file[eos-3:%] eq ".dat") {
set output file[l:eos-4] . ".png"
plot file
}

There is also an equivalent function substr(string, begin, end).

String operators

Three binary operators require string operands: the string concatenation operator ".", the string equality
operator "eq" and the string inequality operator "ne". The following example will print TRUE.
if (IIAII . IIBII eq |IABI|) print IITRUEII

String functions

Gnuplot provides several built-in functions that operate on strings. General formatting functions: see gprintf
(p. 175) sprintf (p. 45). Time formatting functions: see strftime (p. 45) strptime (p. 45). String
manipulation: see split (p. 52), substr (p. 45) strstrt (p. 45) trim (p. 52) word (p. 52) words

(p. 52).

gnuplot 5.5 71

String encoding

Gnuplot’s built-in string manipulation functions are sensitive to utf-8 encoding (see set encoding (p. 171)).
For example

set encoding utf8

utf8string = "afy"

strlen(utf8string) returns 3 (number of characters, not number of bytes)
utf8string[2:2] evaluates to "B"

strstrt(utf8string,"p") evaluates to 2

Substitution and Command line macros

When a command line to gnuplot is first read, i.e. before it is interpreted or executed, two forms of lexical
substitution are performed. These are triggered by the presence of text in backquotes (ascii character 96) or
preceded by @ (ascii character 64).

Substitution of system commands in backquotes

Command-line substitution is specified by a system command enclosed in backquotes. This command is
spawned and the output it produces replaces the backquoted text on the command line. Exit status of the
system command is returned in variables GPVAL_SYSTEM_ERRNO and GPVAL_SYSTEM_ERRMSG.

Note: Internal carriage-return ("\r’) and newline ("\n’) characters are not stripped from the substituted
string. This is a change from version 5.2.

Command-line substitution can be used anywhere on the gnuplot command line except inside strings de-
limited by single quotes.

Example:

This will run the program leastsq and replace leastsq (including backquotes) on the command line with
its output:

f(x) = ‘leastsq‘

or, in VMS

f(x) = ‘run leastsq‘

These will generate labels with the current time and userid:

set label "generated on ‘date +%4Y-Ym-%d‘ by ‘whoami‘" at 1,1
set timestamp "generated on %Y-Y%m-%d by ‘whoami‘"

Substitution of string variables as macros

The character @ is used to trigger substitution of the current value of a string variable into the command
line. The text in the string variable may contain any number of lexical elements. This allows string variables
to be used as command line macros. Only string constants may be expanded using this mechanism, not
string-valued expressions. For example:

stylel = "lines 1t 4 1lw 2"

style2 = "points 1t 3 pt 5 ps 2"

rangel = "using 1:3"

range2 = "using 1:5"

plot "foo" @rangel with @stylel, "bar" @range2 with @style2

72 gnuplot 5.5

The line containing @ symbols is expanded on input, so that by the time it is executed the effect is identical
to having typed in full

plot "foo" using 1:3 with lines 1t 4 1lw 2, \
"bar" using 1:5 with points 1t 3 pt 5 ps 2

The function exists() may be useful in connection with macro evaluation. The following example checks that
C can safely be expanded as the name of a user-defined variable:

C = Hpin
if (exists(C)) print C," = ", @C

Macro expansion does not occur inside either single or double quotes. However macro expansion does occur
inside backquotes.

Macro expansion is handled as the very first thing the interpreter does when looking at a new line of
commands and is only done once. Therefore, code like the following will execute correctly:

A = "g=1"
A

but this line will not, since the macro is defined on the same line and will not be expanded in time

A = "c=1"; QA # will not expand to c=1

Macro expansion inside a bracketed iteration occurs before the loop is executed; i.e. @A will always act as
the original value of A even if A itself is reassigned inside the loop.

For execution of complete commands the evaluate command may also be handy.

String variables, macros, and command line substitution

The interaction of string variables, backquotes and macro substitution is somewhat complicated. Backquotes
do not block macro substitution, so

filename = "mydata.inp"

lines = ¢ wc --lines @filename | sed "s/ .x//"

<
results in the number of lines in mydata.inp being stored in the integer variable lines. And double quotes do
not block backquote substitution, so

mycomputer = "‘uname -n‘"

results in the string returned by the system command uname -n being stored in the string variable mycom-
puter.

However, macro substitution is not performed inside double quotes, so you cannot define a system command
as a macro and then use both macro and backquote substitution at the same time.

machine_id = "uname -n"
mycomputer = "‘GOmachine_id‘" # doesn’t work!!

This fails because the double quotes prevent @machine_id from being interpreted as a macro. To store a
system command as a macro and execute it later you must instead include the backquotes as part of the
macro itself. This is accomplished by defining the macro as shown below. Notice that the sprintf format
nests all three types of quotes.

machine_id = sprintf(’"‘uname -n‘"’)
mycomputer = @machine_id

gnuplot 5.5 73

Syntax

Options and any accompanying parameters are separated by spaces whereas lists and coordinates are sep-
arated by commas. Ranges are separated by colons and enclosed in brackets [], text and file names are
enclosed in quotes, and a few miscellaneous things are enclosed in parentheses.

Commas are used to separate coordinates on the set commands arrow, key, and label; the list of variables
being fitted (the list after the via keyword on the fit command); lists of discrete contours or the loop
parameters which specify them on the set cntrparam command; the arguments of the set commands
dgrid3d, dummy, isosamples, offsets, origin, samples, size, time, and view; lists of tics or the loop
parameters which specify them; the offsets for titles and axis labels; parametric functions to be used to
calculate the x, y, and z coordinates on the plot, replot and splot commands; and the complete sets of
keywords specifying individual plots (data sets or functions) on the plot, replot and splot commands.

Parentheses are used to delimit sets of explicit tics (as opposed to loop parameters) and to indicate compu-
tations in using specifiers of the fit, plot, replot and splot commands.

(Parentheses and commas are also used as usual in function notation.)
Square brackets are used to delimit ranges given in set, plot or splot commands.

Colons are used to separate extrema in range specifications (whether they are given on set, plot or splot
commands) and to separate entries in the using specifier of the plot, replot, splot and fit commands.

Semicolons are used to separate commands given on a single command line.

Curly braces are used in the syntax for enhanced text mode and to delimit blocks in if/then/else statements.
They are also used to denote complex numbers: {3,2} = 3 + 2i.

Quote marks

Gnuplot uses three forms of quote marks for delimiting text strings, double-quote (ascii 34), single-quote
(ascii 39), and backquote (ascii 96).

Filenames may be entered with either single- or double-quotes. In this manual the command examples
generally single-quote filenames and double-quote other string tokens for clarity.

String constants and text strings used for labels, titles, or other plot elements may be enclosed in either
single quotes or double quotes. Further processing of the quoted text depends on the choice of quote marks.

Backslash processing of special characters like \n (newline) and \345 (octal character code) is performed
only for double-quoted strings. In single-quoted strings, backslashes are just ordinary characters. To get a
single-quote (ascii 39) in a single-quoted string, it must be doubled. Thus the strings "d\" s’ b\\" and ’d"
s’ b\’ are completely equivalent.

Text justification is the same for each line of a multi-line string. Thus the center-justified string
"This is the first line of text.\nThis is the second line."

will produce
This is the first line of text.
This is the second line.

but
’This is the first line of text.\nThis is the second line.’

will produce
This is the first line of text.\nThis is the second line.

Enhanced text processing is performed for both double-quoted text and single-quoted text, but only by
terminals supporting this mode. See enhanced text (p. 38).

Back-quotes are used to enclose system commands for substitution into the command line. See substitution
(p. 71).

74 gnuplot 5.5

Time/Date data

gnuplot supports the use of time and/or date information as input data. This feature is activated by the
commands set xdata time, set ydata time, etc.

Internally all times and dates are converted to the number of seconds from the year 1970. The command
set timefmt defines the default format for all inputs: data files, ranges, tics, label positions — anything that
accepts a time data value defaults to receiving it in this format. Only one default format can be in effect at
a given time. Thus if both x and y data in a file are time/date, by default they are interpreted in the same
format. However this default can be replaced when reading any particular file or column of input using the
timecolumn function in the corresponding using specifier.

The conversion to and from seconds assumes Universal Time (which is the same as Greenwich Standard
Time). There is no provision for changing the time zone or for daylight savings. If all your data refer to the
same time zone (and are all either daylight or standard) you don’t need to worry about these things. But if
the absolute time is crucial for your application, you’ll need to convert to UT yourself.

Commands like show xrange will re-interpret the integer according to timefmt. If you change timefmt,
and then show the quantity again, it will be displayed in the new timefmt. For that matter, if you reset
the data type flag for that axis (e.g. set xdata), the quantity will be shown in its numerical form.

The commands set format or set tics format define the format that will be used for tic labels, whether
or not input for the specified axis is time/date.

If time/date information is to be plotted from a file, the using option must be used on the plot or splot
command. These commands simply use white space to separate columns, but white space may be embedded
within the time/date string. If you use tabs as a separator, some trial-and-error may be necessary to discover
how your system treats them.

The time function can be used to get the current system time. This value can be converted to a date
string with the strftime function, or it can be used in conjunction with timecolumn to generate relative
time/date plots. The type of the argument determines what is returned. If the argument is an integer, time
returns the current time as an integer, in seconds from 1 Jan 1970. If the argument is real (or complex), the
result is real as well. The precision of the fractional (sub-second) part depends on your operating system.
If the argument is a string, it is assumed to be a format string, and it is passed to strftime to provide a
formatted time/date string.

The following example demonstrates time/date plotting.

Suppose the file "data" contains records like

03/21/95 10:00 6.02e23

This file can be plotted by

set xdata time

set timefmt "%m/%d/%y"

set xrange ["03/21/95":"03/22/95"]
set format x "%m/%d"

set timefmt "Ym/%d/%y %H:7%M"

plot "data" using 1:3

which will produce xtic labels that look like "03/21".

Gnuplot tracks time to millisecond precision. Time formats have been modified to match this. Example:
print the current time to msec precision

print strftime("%H:%M:%.3S %d-%b-%Y",time(0.0))
18:15:04.253 16-Apr-2011

See time_specifiers (p. 176), set xtics time (p. 248), set mxtics time (p. 199).

gnuplot 5.5 75

Watchpoints

Support for watchpoints is present only if your copy of gnuplot was built with configuration option —enable-
watchpoints. This feature is EXPERIMENTAL [details may change before it appears in a release version)].

Syntax:

plot FOO watch {x|ylz|F(x,y)} = <value>
plot FOO watch mouse

set style watchpoints nolabels
set style watchpoints label <label-properties>

unset style watchpoints # return to default style

show watchpoints # summarizes all watches from previous plot command

A watchpoint is a target value for the x, y, or z coordinate or for a function f(x,y). Each watchpoint is
attached to a single plot within a plot command. Watchpoints are tracked only for styles with lines and
with linespoints. Every component line segment of that plot is checked against all watchpoints attached
the plot to see whether one or more of the watchpoint targets is satisfied at a point along that line segment.
A list of points that satisfy the the target condition ("hits") is accumulated as the plot is drawn.

For example, if there is a watchpoint with a target y=100, each line segment is checked to see if the y
coordinates of the two endpoints bracket the target y value. If so then some point [x,y] on the line segment
satisfies the target condition y = 100 exactly. This target point is then found by linear interpolation or by
iterative bisection.

Watchpoints within a single plot command are numbered successively. More than one watchpoint per plot
component may be specified. Example:

plot DATA using 1:2 smooth cnormal watch y=0.25 watch y=0.5 watch y=0.75

Watchpoint hits for each target in the previous plot
command are stored in named arrays WATCH_n. You
can also display a summary of all watchpoint hits from
the previous plot command; see show watchpoints
(p. 240).

Find quartile values on a ROC curve

gnuplot> show watchpoints 050
Plot title: "DATA using 1:2 smooth cnormal" 0.25
Watch 1 target y = 0.25 (1 hits)
hit 1 x 49.7 y 0.25 : 0.00
Watch 2 target y = 0.5 (1 hits) o
hit 1 x 63.1 y 0.5
Watch 3 target y = 0.75 (1 hits)

hit 1 x 67.8 y 0.75

Smoothing: Line segments are checked as they are drawn. For unsmoothed data plots this means a hit found
by interpolation will lie exactly on a line segment connecting two data points. If a data plot is smoothed,
hits will lie on a line segment from the smoothed curve. Depending on the quality of the smoothed fit, this
may or may not be more accurate than the hit from the unsmoothed data.

Accuracy: If the line segment was generated from a function plot, the exact value of x such that f(x) =y is
found by iterative bisection. Otherwise the coordinates [x,y] are approximated by linear interpolation along
the line segment.

76 gnuplot 5.5

Watch mouse

Using the current mouse x coordinate as a watch target generates a label that moves along the line of the plot
tracking the horizontal position of the mouse. This allows simultaneous readout of the y values of multiple
plot lines in the same graph. The appearance of the point indicating the current position and of the label
can be modified by set style watchpoint and set style textbox

Example:

set style watchpoint labels point pt 6 ps 2 boxstyle 1
set style textbox 1 1lw 0.5 opaque
plot for [i=1:N] "file.dat" using 1:(column(i)) watch mouse

Watch labels

By default, labels are always generated for the target "watch mouse". You can turn labels on for other watch
targets using the command set style watchpoint labels. The label text is "x : y", where x and y are the
coordinates of the point, formatted using the current settings for the corresponding axes.

Example:

set y2tics format "%.2f°"
set style watchpoint labels point pt 6
plot FOO axes x1y2 watch mouse

gnuplot 5.5 77

Part 11
Plotting styles

Many plotting styles are available in gnuplot. They are listed alphabetically below. The commands set style
data and set style function change the default plotting style for subsequent plot and splot commands.

You can also specify the plot style explicitly as part of the plot or splot command. If you want to mix plot
styles within a single plot, you must specify the plot style for each component.

Example:

plot ’data’ with boxes, sin(x) with lines

Each plot style has its own expected set of data entries in a data file. For example, by default the lines style
expects either a single column of y values (with implicit x ordering) or a pair of columns with x in the first
and y in the second. For more information on how to fine-tune how columns in a file are interpreted as plot
data, see using (p. 139).

Arrows

The 2D arrows style draws an arrow with specified length and orientation angle at each point (x,y). Addi-
tional input columns may be used to provide variable (per-datapoint) color information or arrow style. It is
identical to the 2D style with vectors except that each the arrow head is positioned using length + angle
rather than delta_x + delta_y. See with vectors (p. 99).

4 columns: x y length angle

The keywords with arrows may be followed by inline arrow style properties, a reference to a predefined
arrow style, or arrowstyle variable to load the index of the desired arrow style for each arrow from a
separate column.

length > 0 is interpreted in x-axis coordinates. -1 < length < 0 is interpreted in horizontal graph coordi-
nates; i.e. |length| is a fraction of the total graph width. The program will adjust for differences in x and y
scaling or plot aspect ratio so that the visual length is independent of the orientation angle.

angle is always specified in degrees.

Bee swarm plots

"Bee swarm" plots result from applying jitter to sepa-

rate overlapping points. A typical use is to compare the swarm (default) square
distribution of y values exhibited by two or more cat- 45 45
egories of points, where the category determines the x 40 40
coordinate. See the set jitter (p. 181) command for 33 33
how to control the overlap criteria and the displacement 3(5) 53
pattern used for jittering. The plots in the figure were 15 15
created by the same plot command but different jitter — '? -
settings. 0 0
set jitter A B A B

plot $data using 1:2:1 with points lc variable

78 gnuplot 5.5

Boxerrorbars

The boxerrorbars style is only relevant to 2D data plotting. It is a combination of the boxes and yer-
rorbars styles. It requires 3, 4, or 5 columuns of data. An additional (4th, 5th or 6th) input column may be
used to provide variable (per-datapoint) color information (see linecolor (p. 62) and rgbcolor variable

(p- 63)).

3 columns: x y ydelta

4 columns: x y ydelta xdelta (xdelta <= 0 means use boxwidth)

5 columns: x y ylow yhigh xdelta (xdelta <= 0 means use boxwidth)
DEPRECATED

4 columns: x y ylow yhigh # boxwidth == -2

The boxwidth will come from the fourth column if the
y errors are given as "ydelta" or from the fifth column with boxerrorbars
if they are in the form of "ylow yhigh". If xdelta is zero

or negative, the width of the box is controlled by the

value previously given for boxwidth. See set boxwidth

(p. 159).

A vertical error bar is drawn to represent the y error in ﬁ

the same way as for the yerrorbars style, either from ? L
y-ydelta to y+ydelta or from ylow to yhigh, depending

on how many data columns are provided. The line style

used for the error bar may be controlled using set bars (p. 172). Otherwise the error bar will match the
border of the box.

DEPRECATED: The special case boxwidth = -2.0 is for four-column data with y errors in the form "ylow
yvhigh". In this case the boxwidth will be calculated so that each box touches the adjacent boxes.

Boxes

In 2D plots the boxes style draws a rectangle centered about the given x coordinate that extends from the
x axis, i.e. from y=0 not from the graph border, to the given y coordinate. The width of the box can be
provided in an additional input column or controlled by set boxwidth. Otherwise each box extends to
touch the adjacent boxes.

In 3D plots the boxes style draws a box centered at the given [x,y] coordinate that extends from the plane
at z=0 to the given z coordinate. The width of the box on x can be provided in a separate input column or
via set boxwidth. The depth of the box on y is controlled by set boxdepth. Boxes do not automatically
expand to touch each other as in 2D plots.

2D boxes
plot with boxes uses 2 or 3 columns of basic data. Additional input columns may be used to provide
information such as variable line or fill color. See rgbcolor variable (p. 63).

2 columns: x y
3 columns: x y x_width

gnuplot 5.5 79

The width of the box is obtained in one of three ways.
If the input data has a third column, this will be used with boxes m—
to set the box width. Otherwise if a width has been set
using the set boxwidth command, this will be used. If

neither of these is available, the width of each box will
be calculated so that it touches the adjacent boxes.
The box interiors are drawn using the current fillstyle. - I

Alternatively a fillstyle may be specified in the plot com-
mand. See set style fill (p. 226). If no fillcolor is given
in the plot command, the current line color is used.

Examples:
To plot a data file with solid filled boxes with a small vertical space separating them (bargraph):

set boxwidth 0.9 relative
set style fill solid 1.0
plot ’file.dat’ with boxes

To plot a sine and a cosine curve in pattern-filled boxes style:

set style fill pattern
plot sin(x) with boxes, cos(x) with boxes

The sin plot will use pattern 0; the cos plot will use pattern 1. Any additional plots would cycle through
the patterns supported by the terminal driver.

To specify explicit fillstyles and fillcolors for each dataset:

plot ’filel’ with boxes fs solid 0.25 fc ’cyan’, \
’file2’ with boxes fs solid 0.50 fc ’blue’, \
’file3’ with boxes fs solid 0.75 fc ’magenta’, \
’file4’ with boxes fill pattern 1, \
’fileb’ with boxes fill empty

3D boxes

splot with boxes requires at least 3 columns of input data. Additional input columns may be used to
provide information such as box width or fill color.

3 columns: x y 2z
4 columns: x y z [x_width or color]
5 columns: x y 2z Xx_width color

The last column is used as a color only if the splot command specifies a variable color mode. Examples

splot ’blue_boxes.dat’ using 1:2:3 fc "blue"
splot ’rgb_boxes.dat’ using 1:2:3:4 fc rgb variable
splot ’category_boxes.dat’ using 1:2:3:4:5 lc variable

In the first example all boxes are blue and have the width previously set by set boxwidth. In the second
example the box width is still taken from set boxwidth because the 4th column is interpreted as a 24-bit
RGB color. The third example command reads box width from column 4 and interprets the value in column
5 as an integer linetype from which the color is derived.

By default boxes have no thickness; they consist of a single rectangle parallel to the xz plane at the specified
y coordinate. You can change this to a true box with four sides and a top by setting a non-zero extent on
y. See set boxdepth (p. 159).

80 gnuplot 5.5

3D boxes are processed as pm3d quadrangles rather than
as surfaces. Because of this the front /back order of draw- Full treatment: 3D boxes with pm3d depth sorting and lighting
ing is not affected by set hidden3d. Similarly if you I
want each box face to have a border you must use set
pm3d border rather than set style fill border. See
set pm3d (p. 213). For best results use a combina-
tion of set pm3d depthorder base and set pm3d
lighting.

Boxplot

Boxplots are a common way to represent a statistical dis-

tribution of values. Quartile boundaries are determined ig i .
such that 1/4 of the points have a value equal or less 120 1
than the first quartile boundary, 1/2 of the points have 100 -
a value equal or less than the second quartile (median) 80 I
value, etc. A box is drawn around the region between 60 | .

the first and third quartiles, with a horizontal line at a0 F

e oo o

the median value. Whiskers extend from the box to 20
user-specified limits. Points that lie outside these limits 0F
are drawn individually. A B

Examples

Place a boxplot at x coordinate 1.0 representing the y values in column 5
plot ’data’ using (1.0):5

Same plot but suppress outliers and force the width of the boxplot to 0.3
set style boxplot nooutliers
plot ’data’ using (1.0):5:(0.3)

By default only one boxplot is produced that represents all y values from the second column of the using
specification. However, an additional (fourth) column can be added to the specification. If present, the
values of that column will be interpreted as the discrete levels of a factor variable. As many boxplots will be
drawn as there are levels in the factor variable. The separation between these boxplots is 1.0 by default, but
it can be changed by set style boxplot separation. By default, the value of the factor variable is shown
as a tic label below (or above) each boxplot.

Example

Suppose that column 2 of ’data’ contains either "control" or "treatment"
The following example produces two boxplots, one for each level of the
factor

plot ’data’ using (1.0):5:(0):2

The default width of the box can be set via set boxwidth <width> or may be specified as an optional
3rd column in the using clause of the plot command. The first and third columns (x coordinate and width)
are normally provided as constants rather than as data columns.

By default the whiskers extend from the ends of the box to the most distant point whose y value lies within
1.5 times the interquartile range. By default outliers are drawn as circles (point type 7). The width of the
bars at the end of the whiskers may be controlled using set bars (p. 172) or set errorbars (p. 172).

These default properties may be changed using the set style boxplot command. See set style boxplot
(p- 224), bars (p. 172), boxwidth (p. 159), fillstyle (p. 226), candlesticks (p. 81).

gnuplot 5.5 81

Boxxyerror

The boxxyerror plot style is only relevant to 2D data
plotting. It is similar to the xyerrorbars style except with boxxyerror C——
that it draws rectangular areas rather than crosses. It
uses either 4 or 6 basic columns of input data. Addi-

tional input columns may be used to provide information D D D D D

such as variable line or fill color (see rgbcolor variable
(p- 63)). DE]

4 columns: x y xdelta ydelta
6 columns: x y xlow xhigh ylow yhigh

N
[

The box width and height are determined from the x and y errors in the same way as they are for the
xyerrorbars style — either from xlow to xhigh and from ylow to yhigh, or from x-xdelta to x+xdelta and
from y-ydelta to y+ydelta, depending on how many data columns are provided.

The 6 column form of the command provides a convenient way to plot rectangles with arbitrary x and y
bounds.

An additional (5th or 7th) input column may be used to provide variable (per-datapoint) color information
(see linecolor (p. 62) and rgbcolor variable (p. 63)).

The interior of the boxes is drawn according to the current fillstyle. See set style fill (p. 226) and boxes
(p. 78) for details. Alternatively a new fillstyle may be specified in the plot command.

Candlesticks

The candlesticks style can be used for 2D data plotting
of financial data or for generating box-and-whisker plots T with candlesticks Em
of statistical data. The symbol is a rectangular box,
centered horizontally at the x coordinate and limited
vertically by the opening and closing prices. A vertical i

line segment at the x coordinate extends up from the ﬁ I I !
top of the rectangle to the high price and another down i
to the low. The vertical line will be unchanged if the i
low and high prices are interchanged.

Five columns of basic data are required:

financial data: date open 1low high <close
whisker plot: x box_min whisker_min whisker_high box_high

The width of the rectangle can be controlled by the set boxwidth command. For backwards compatibility
with earlier gnuplot versions, when the boxwidth parameter has not been set then the width of the candlestick
rectangle is taken from set errorbars <width>.

Alternatively, an explicit width for each box-and-whiskers grouping may be specified in an optional 6th
column of data. The width must be given in the same units as the x coordinate.

An additional (6th, or 7th if the 6th column is used for width data) input column may be used to provide
variable (per-datapoint) color information (see linecolor (p. 62) and rgbcolor variable (p. 63)).

By default the vertical line segments have no crossbars at the top and bottom. If you want crossbars, which
are typically used for box-and-whisker plots, then add the keyword whiskerbars to the plot command. By
default these whiskerbars extend the full horizontal width of the candlestick, but you can modify this by
specifying a fraction of the full width.

82 gnuplot 5.5

The usual convention for financial data is that the rectangle is empty if (open < close) and solid fill if (close
< open). This is the behavior you will get if the current fillstyle is set to "empty". See fillstyle (p. 226).
If you set the fillstyle to solid or pattern, then this will be used for all boxes independent of open and close
values. See also set errorbars (p. 172) and financebars (p. 85). See also the candlestick

and finance
demos.

Note: To place additional symbols, such as the median value, on a box-and-whisker plot requires additional
plot commands as in this example:

Data columns:X Min 1stQuartile Median 3rdQuartile Max

set errorbars 4.0

set style fill empty

plot ’stat.dat’ using 1:3:2:6:5 with candlesticks title ’Quartiles’, \
7 using 1:4:4:4:4 with candlesticks 1t -1 notitle

Plot with crossbars on the whiskers, crossbars are 50% of full width
plot ’stat.dat’ using 1:3:2:6:5 with candlesticks whiskerbars 0.5

See set boxwidth (p. 159), set errorbars (p. 172), set style fill (p. 226), and boxplot (p. 80).

Circles

The circles style plots a circle with an explicit radius at
each data point. The radius is always interpreted in the
units of the plot’s horizontal axis (x or x2). The scale
on y and the aspect ratio of the plot are both ignored.
If the radius is not given in a separate column for each L0
point it is taken from set style circle. In this case the 05
radius may use graph or screen coordinates.

25

2.0

15

»

0.0

Many combinations of per-point and previously set prop- 05
erties are possible. For 2D plots these include

-1.0
-25 -20 -1.5 -1.0 -05 0.0 05 10 15

using x:y

using x:y:radius

using x:y:color

using x:y:radius:color

using x:y:radius:arc_begin:arc_end
using x:y:radius:arc_begin:arc_end:color

By default a full circle will be drawn. It is possible to instead plot arc segments by specifying a start and
end angle (in degrees) in columns 4 and 5.

A per-circle color may be provided in the last column of the using specifier. In this case the plot command
must include a corresponding variable color term such as lc variable or fillcolor rgb variable.

For 3D plots the using specifier must contain

splot DATA using x:y:z:radius:color

where the variable color column is options. See set style circle (p. 229) and set style fill (p. 226).
Examples:

draws circles whose area is proportional to the value in column 3
set style fill transparent solid 0.2 noborder
plot ’data’ using 1:2:(sqrt($3)) with circles, \

’data’ using 1:2 with linespoints

http://www.gnuplot.info/demo/candlesticks.html
http://www.gnuplot.info/demo/finance.html

gnuplot 5.5 83

draws Pac-men instead of circles
plot ’data’ using 1:2:(10):(40):(320) with circles

draw a pie chart with inline data

set xrange [-15:15]

set style fill transparent solid 0.9 noborder
plot ’-’ using 1:2:3:4:5:6 with circles lc var

0 0 5 0 30 1
0 0 5 30 70 2
0 0 5 70 120 3
0 0 5 120 230 4
0 0 5 230 360 5
e

The result is similar to using a points plot with variable size points and pointtype 7, except that the circles
will scale with the x axis range. See also set object circle (p. 203) and fillstyle (p. 226).

Ellipses

The ellipses style plots an ellipse at each data point.
This style is only relevant for 2D plotting. Each ellipse
is described in terms of its center, major and minor di-
ameters, and the angle between its major diameter and
the x axis.

with ellipses <>

2 columns: x y

3 columns: x y diam (used for both major and
4 columns: x y major_diam minor_diam

5 columns: x y major_diam minor_diam angle

,,,,,,,,,

be drawn with the default extent (see set style ellipse (p. 229)). The orientation of the ellipse, which is
defined as the angle between the major diameter and the plot’s x axis, is taken from the default ellipse style
(see set style ellipse (p. 229)).

If three input columns are provided, the third column is used for both diameters. The orientation angle
defaults to zero.

If four columns are present, they are interpreted as x, y, major diameter, minor diameter. Note that these
are diameters, not radii. If either diameter is negative, both diameters will be taken from the default set by
set style ellipse.

An optional 5th column may specify the orientation angle in degrees. The ellipses will also be drawn with
their default extent if either of the supplied diameters in the 3-4-5 column form is negative.

In all of the above cases, optional variable color data may be given in an additional last (3th, 4th, 5th or
6th) column. See colorspec (p. 62).

units keyword: If units xy is included in the plot specification, the major diameter is interpreted in the
units of the plot’s horizontal axis (x or x2) while the minor diameter in that of the vertical axis (y or y2). If
the x and y axis scales are not equal, the major/minor diameter ratio will no longer be correct after rotation.
units xx interprets both diameters in units of the x axis. units yy interprets both diameters in units of
the y axis. In the latter two cases the ellipses will have the correct aspect ratio even if the plot is resized. If
units is omitted from the plot command, the setting from set style ellipse will be used.

Example (draws ellipses, cycling through the available line types):
plot ’data’ using 1:2:3:4:(0):0 with ellipses

See also set object ellipse (p. 202), set style ellipse (p. 229) and fillstyle (p. 226).

84 gnuplot 5.5

Dots

The dots style plots a tiny dot at each point; this is
useful for scatter plots with many points. Either 1 or 2
columns of input data are required in 2D. Three columns
are required in 3D.

For some terminals (post, pdf) the size of the dot can
be controlled by changing the linewidth.

1 column # X is row number

y
2 columns: x y
3 columns: x y z # 3D only (splot)

Filledcurves

The filledcurves style is only used for 2D plotting. It

30

has three variants. The first two variants require either wit’l; filledcurves

a single function or two columns (x,y) of input data, and 25 - p—

may be further modified by the options listed below. EE;Z:; —
20 —

Syntax:

15
plot ... with filledcurves [option]

10

where the option can be one of the following

250
closed

{above|below} x1 x2 7y r=<a> xy=<x>,<y>
between

The first variant, closed, treats the curve itself as a closed polygon. This is the default if there are two
columns of input data.
filledcurves closed ... just filled closed curve,

The second variant is to fill the area between the curve and a given axis, a horizontal or vertical line, or a
point. This can be further restricted to filling the area above or below the specified line.

filledcurves x1 ... x1 axis,

filledcurves x2 ... X2 axis, etc for yl and y2 axes,
filledcurves y=42 ... line at y=42, i.e. parallel to x axis,
filledcurves xy=10,20 ... point 10,20 of x1,yl axes (arc-like shape).

filledcurves above r=1.5 the area of a polar plot outside radius 1.5

gnuplot 5.5 85

The third variant fills the area between two curves sam-
pled at the same set of x coordinates. It requires three
columns of input data (x, y1, y2). This is the default if " Shaded error region
there are three or more columns of input data. If you Monotonic spline through data
have a y value in column 2 and an associated error value 100 ¢
in column 3 the area of uncertainty can be represented

Ag 108 decay data

1000 T T

Rate

by shading. See also the similar 3D plot style zerrorfill 10F
(p. 104).
. 1 1 1 1 1 1
3 columns: x y yerror 0 100 200 300 400 500 600
plot $DAT using 1:($2-$3):($2+$3) with filledcurves, \ Time (sec)

$DAT using 1:2 smooth mcs with lines

The above and below options apply both to commands of the form
. filledcurves above {x1|x2|y|r}=<val>

and to commands of the form
. using 1:2:3 with filledcurves below

In either case the option limits the filled area to one side of the bounding line or curve.

Zooming a filled curve drawn from a datafile may produce empty or incorrect areas because gnuplot is
clipping points and lines, and not areas.

If the values <x>, <y>, or <a> are outside the drawing boundary they are moved to the graph boundary.
Then the actual fill area in the case of option xy=<x>,<y> will depend on xrange and yrange.

Fill properties

Plotting with filledcurves can be further customized by giving a fillstyle (solid/transparent/pattern) or a
fillcolor. If no fillstyle (fs) is given in the plot command then the current default fill style is used. See set
style fill (p. 226). If no fillcolor (fc) is given in the plot command, the usual linetype color sequence is
followed.

The {{no}border} property of the fillstyle is honored by filledcurves mode closed, the default. It is ignored
by all other filledcurves modes. Example:
plot ’data’ with filledcurves fc "cyan" fs solid 0.5 border 1lc "blue"

Financebars

The financebars style is only relevant for 2D data plotting of financial data. It requires 1 x coordinate
(usually a date) and 4 y values (prices).

5 columns: date open 1low high close

An additional (6th) input column may be used to provide variable (per-record) color information (see line-
color (p. 62) and rgbcolor variable (p. 63)).

The symbol is a vertical line segment, located horizon-
tally at the x coordinate and limited vertically by the with financebars
high and low prices. A horizontal tic on the left marks
the opening price and one on the right marks the clos-
ing price. The length of these tics may be changed by l‘ 4» r J’ {

set errorbars. The symbol will be unchanged if the
high and low prices are interchanged. See set error- j
bars (p. 172) and candlesticks (p. 81), and also the j
finance demo.

http://www.gnuplot.info/demo/finance.html

86 gnuplot 5.5

Fillsteps

plot <data> with fillsteps {above|below} {y=<baseline>}

The fillsteps style is only relevant to 2D plotting. It is
exactly like the style steps except that the area between with fillsteps
the curve and the baseline (default y=0) is filled in the d‘g’ti;hpzt;[;: A
current fill style. The options above and below fill

only the portion to one side of the baseline. Note that |
in moving from one data point to the next, both steps
and fillsteps first trace the change in x coordinate and

then the change in y coordinate. See steps (p. 98). l

Fsteps

The fsteps style is only relevant to 2D plotting. It con-
nects consecutive points with two line segments: the first with fsteps
from (x1,y1) to (x1,y2) and the second from (x1,y2) to data points
(x2,y2). The input column requires are the same as for
plot styles lines and points. The difference between _I’
fsteps and steps is that fsteps traces first the change
in y and then the change in x. steps traces first the
change in x and then the change in y. ,

See also steps demo. ! l

Histeps

The histeps style is only relevant to 2D plotting. It
is intended for plotting histograms. Y-values are as- with histeps
sumed to be centered at the x-values; the point at x1 is data points ¢
represented as a horizontal line from ((x0+x1)/2,y1) to
((x1+x2)/2,y1). The lines representing the end points | [
are extended so that the step is centered on at x. Adja-
cent points are connected by a vertical line at their aver-
age x, that is, from ((x14x2)/2,y1) to ((x1+x2)/2,y2).
The input column requires are the same as for plot styles
lines and points.

If autoscale is in effect, it selects the xrange from the data rather than the steps, so the end points will
appear only half as wide as the others. See also steps demo.

http://www.gnuplot.info/demo/steps.html
http://www.gnuplot.info/demo/steps.html

gnuplot 5.5 87

Heatmaps

Several of gnuplot’s plot styles can be used to create heat maps. The choice of which style to use is dictated
by the type of data.

The pixel-based image styles require a regular rectangu-
lar grid of data values; see with image (p. 91). How-

Atlantis Finias Ys Erewhon

ever it is possible to deal with some missing grid values Erewhon 60
(see sparse (p. 258)) and it is also possible to mask v50.
out only a portion of the grid for display (see masking Ys w0
(p- 95)). These pixel-based heat maps all have the prop- '
erty that each pixel in the map corresponds exactly to Finias v30.
one original data value. Unless there are a large number a0,
of grid element, it is usually a good idea to render each Alantis) i
rectangular element separately (with image pixels) so nterely Transi “1o.
that smoothing or lossy compression is not applied to

the resulting "image".

If the data points do not constitue a regular rectangu- Cluster of points pm3d surface masked by

lar grid, they can often be used to fit a gridded surface defining the mask region convex hull of the cluster
by interpolation or by splines. Alternatively a point-
density function can be mapped onto a gridded plane or
smooth surface. See set dgrid3d (p. 170). The grid-
ded surface can then be plotted as a pm3d surface (see
masking (p. 95) example). In this case the points on
the heat map do not retain a one-to-one correspondance
with the input data. I.e. the validity of the heat map
represenation is only as good as the gridded approxima-
tion. The demo collection has examples of generating
2D heatmaps from a set of points heatmap_points.dem

If your copy of gnuplot was built with the —enable-polar-

grid option, polar coordinate data points can be used to 77
generate a 2D polar heat map in which each "pixel" / P \\ :
corresponded to a pre-determined range of theta and L it O
r. See set polar grid (p. 219) and with surface [[T ‘2tam
(p. 99). This process is exactly analogous to the use of TR S=0 1L0 1}50 2100
set dgrid3d and with pm3d except that it operates ‘ X AL
in 2D polar coordinate space. N
VX
Histograms

The histograms style is only relevant to 2D plotting.

It produces a bar chart from a sequence of parallel data

columns. Each element of the plot command must specify a single input data source (e.g. one column of
the input file), possibly with associated tic values or key titles. Four styles of histogram layout are currently
supported.

set style histogram clustered {gap <gapsize>}

set style histogram errorbars {gap <gapsize>} {<linewidth>}
set style histogram rowstacked

set style histogram columnstacked

set style histogram {title font "name,size" tc <colorspec>}

http://www.gnuplot.info/demo/heatmap_points.html

88 gnuplot 5.5

The default style corresponds to set style histogram clustered gap 2. In this style, each set of parallel
data values is collected into a group of boxes clustered at the x-axis coordinate corresponding to their
sequential position (row #) in the selected datafile columns. Thus if <n> datacolumns are selected, the first
cluster is centered about x=1, and contains <n> boxes whose heights are taken from the first entry in the
corresponding <n> data columns. This is followed by a gap and then a second cluster of boxes centered about
x=2 corresponding to the second entry in the respective data columns, and so on. The default gap width of
2 indicates that the empty space between clusters is equivalent to the width of 2 boxes. All boxes derived
from any one column are given the same fill color and/or pattern; however see the subsection histograms
colors (p. 91).

Each cluster of boxes is derived from a single row of the input data file. It is common in such input files that
the first element of each row is a label. Labels from this column may be placed along the x-axis underneath
the appropriate cluster of boxes with the xticlabels option to using.

The errorbars style is very similar to the clustered style, except that it requires additional columns of
input for each entry. The first column holds the height (y value) of that box, exactly as for the clustered
style.

2 columns: y yerr bar extends from y-yerr to yt+err
3 columns: y ymin ymax bar extends from ymin to ymax

The appearance of the error bars is controlled by the current value of set errorbars and by the optional
<linewidth> specification.

Two styles of stacked histogram are supported, chosen by the command set style histogram
{rowstacked|columnstacked}. In these styles the data values from the selected columns are collected
into stacks of boxes. Positive values stack upwards from y=0; negative values stack downwards. Mixed
positive and negative values will produce both an upward stack and a downward stack. The default stacking
mode is rowstacked.

The rowstacked style places a box resting on the x-axis for each data value in the first selected column;
the first data value results in a box a x=1, the second at x=2, and so on. Boxes corresponding to the second
and subsequent data columns are layered on top of these, resulting in a stack of boxes at x=1 representing
the first data value from each column, a stack of boxes at x=2 representing the second data value from each
column, and so on. All boxes derived from any one column are given the same fill color and/or pattern (see
set style fill (p. 226)).

The columnstacked style is similar, except that each stack of boxes is built up from a single data column.
Each data value from the first specified data column yields a box in the stack at x=1, each data value from
the second specified data column yields a box in the stack at x=2, and so on. In this style the color of each
box is taken from the row number, rather than the column number, of the corresponding data field.

Box widths may be modified using the set boxwidth command. Box fill styles may be set using the set
style fill command.

Histograms always use the x1 axis, but may use either y1 or y2. If a plot contains both histograms and other
plot styles, the non-histogram plot elements may use either the x1 or the x2 axis.

One additional style option set style histogram nokeyseparators is relevant only to plots that contain
multiple histograms. See newhistogram (p. 90) for additional discussion of this case.

Examples:

gnuplot 5.5 89

Suppose that the input file contains data values in
columns 2, 4, 6, ... and error estimates in columns 3,
5, 7, ... This example plots the values in columns 2 and
4 as a histogram of clustered boxes (the default style).
Because we use iteration in the plot command, any num-
ber of data columns can be handled in a single command.
See plot for (p. 145).

set boxwidth 0.9 relative

set style data histograms

set style histogram cluster

set style fill solid 1.0 border 1t -1
plot for [COL=2:4:2] ’file.dat’ using COL

S = N W kA Ul O N O ©
T
1

This will produce a plot with clusters of two boxes (vertical bars) centered at each integral value on the
x axis. If the first column of the input file contains labels, they may be placed along the x-axis using the
variant command

plot for [COL=2:4:2] ’file.dat’ using COL:xticlabels(1)

If the file contains both magnitude and range informa-
tion for each value, then error bars can be added to the L E g |
plot. The following commands will add error bars ex-

tending from (y-<error>) to (y+<error>), capped by
horizontal bar ends drawn the same width as the box
itself. The error bars and bar ends are drawn with
linewidth 2, using the border linetype from the current
fill style.

Histogram with error bars

—
o

set errorbars fullwidth

set style fill solid 1 border 1t -1

set style histogram errorbars gap 2 lw 2
plot for [COL=2:4:2] ’file.dat’ using COL:COL+1

S = N W A U1 O N © ©
T
1

This shows how to plot the same data as a rowstacked histogram. Just to be different, this example lists the
separate columns explicitly rather than using iteration.

set style histogram rowstacked
plot ’file.dat’ using 2, ’’ using 4:xtic(1)

This will produce a plot in which each vertical bar cor- 10 Rowstacked
responds to one row of data. Each vertical bar contains ClassB]

. . . ClassA 3
a stack of two segments, corresponding in height to the sl .

values found in columns 2 and 4 of the datafile. Finally,

the commands

set style histogram columnstacked
plot ’file.dat’ using 2, ’’ using 4 2k]

90 gnuplot 5.5

will produce two vertical stacks, one for each column __Columnstacked

of data. The stack at x=1 will contain a box for each 16k i
entry in column 2 of the datafile. The stack at x=2 will 14k i
contain a box for each parallel entry in column 4 of the
datafile.

Because this interchanges gnuplot’s usual interpretation
of input rows and columns, the specification of key titles
and x-axis tic labels must also be modified accordingly.
See the comments given below.

ClassA ClassB

set style histogram columnstacked
plot ’’ u 5:key(1) # uses first column to generate key titles
plot ’’ u 5 title columnhead # uses first row to generate xtic labels

Note that the two examples just given present exactly the same data values, but in different formats.

Newhistogram

Syntax:

newhistogram {"<title>" {font "name,size"} {tc <colorspec>}}
{1t <linetype>} {fs <fillstyle>} {at <x-coord>}

More than one set of histograms can appear in a single plot. In this case you can force a gap between them,
and a separate label for each set, by using the newhistogram command. For example
set style histogram cluster
plot newhistogram "Set A", ’a’ using 1, ’’ using 2, ’’ using 3, \
newhistogram "Set B", ’b’ using 1, ’’ using 2, ’’ using 3

The labels "Set A" and "Set B" will appear beneath the respective sets of histograms, under the overall x
axis label.

The newhistogram command can also be used to force histogram coloring to begin with a specific color
(linetype). By default colors will continue to increment successively even across histogram boundaries. Here
is an example using the same coloring for multiple histograms
plot newhistogram "Set A" 1t 4, ’a’ using 1, ’’ using 2, ’’ using 3, \
newhistogram "Set B" 1t 4, ’b’ using 1, ’’ using 2, ’’ using 3

Similarly you can force the next histogram to begin with a specified fillstyle. If the fillstyle is set to pattern,
then the pattern used for filling will be incremented automatically.

Starting a new histogram will normally add a blank entry to the key, so that titles from this set of histogram
components will be separated from those of the previous histogram. This blank line may be undesirable
if the components have no individual titles. It can be suppressed by modifying the style with set style
histogram nokeyseparators.

The at <x-coord> option sets the x coordinate position

of the following histogram to <x-coord>. For example L ClassA HmmE |
ClassB 1

set style histogram cluster R

ClassA 3 |

set style data histogram

set style fill solid 1.0 border -1

set xtic 1 offset character 0,0.3

plot newhistogram "Set A", \
’file.dat’ ul1 t 1, 2 u2t 2, \
newhistogram "Set B" at 8, \
’file.dat’ u2t 2, > u2t 2

ClassB

O = N W A U1 O N O ©

1 2 3 4 5 6 7 8 9 10 11 12
SetA SetB

will position the second histogram to start at x=8.

gnuplot 5.5 91

Automated iteration over multiple columns

If you want to create a histogram from many columns of data in a single file, it is very convenient to use
the plot iteration feature. See plot for (p. 145). For example, to create stacked histograms of the data in
columns 3 through 8

set style histogram columnstacked

plot for [i=3:8] "datafile" using i title columnhead

Histogram color assignments

The program assigns a color to each component box in a histogram automatically such that equivalent data
values maintain a consistent color wherever they appear in the rows or columns of the histogram. The
colors are taken from successive linetypes, starting either with the next unused linetype or an initial linetype
provided in a newhistogram element.

In some cases this mechanism fails due to data sources that are not truly parallel (i.e. some files contain
incomplete data). In other cases there may be additional properties of the data that could be visualized
by, say, varying the intensity or saturation of their base color. As an alternative to the automatic color
assigmnent, you can provide an explicit color value for each data value in a second using column via the
linecolor variable or rgb variable mechanism. See colorspec (p. 62). Depending on the layout of your
data, the color category might correspond to a row header or a column header or a data column. Note that
you will probably have to customize the key sample colors to match (see keyentry (p. 184)).

Example: Suppose file_001.dat through file_008.dat contain one column with a category identifier A, B, C,
. and a second column with a data value. Not all of the files contain a line for every category, so they are

not truly parallel. The program would be wrong to assign the same color to the value from line N in each
file. Instead we assign a color based on the category in column 1.

file(i) = sprintf("file_%03d.dat",i)

array Category = ["A", "B", "C", "D", "E", "F"]

color(c) = index(Category, strcol(c))

set style data histogram

plot for [i=1:8] file(i) using 2:(color(1)) linecolor variable

A more complete example including generation of a custom key is in the demo collection
histogram_colors.dem

Image

The image, rgbimage, and rgbalpha plotting styles all project a uniformly sampled grid of data values
onto a plane in either 2D or 3D. The input data may be an actual bitmapped image, perhaps converted from
a standard format such as PNG, or a simple array of numerical values. These plot styles are often used to
produce heatmaps. For 2D heatmaps in polar coordinates, see set polar grid (p. 219).

This figure illustrates generation of a heat map from an 2D Heat map from in-line array of values
array of scalar values. The current palette is used to map 0 1 2 3 4
each value onto the color assigned to the corresponding
pixel. See also sparse (p. 258).

plot ’-’ matrix with image

5

= O N B
N O O W
D - O -
w o~ o

® ® O ON

http://www.gnuplot.info/demo/histogram_colors.html

92 gnuplot 5.5

Each pixel (data point) of the input 2D image will be-
come a rectangle or parallelipiped in the plot. The co-
ordinates of each data point will determine the center
of the parallelipiped. That is, an M x N set of data
will form an image with M x N pixels. This is differ-
ent from the pm3d plotting style, where an M x N set
of data will form a surface of (M-1) x (N-1) elements.
The scan directions for a binary image data grid can be
further controlled by additional keywords. See binary
keywords flipx (p. 128), keywords center (p. 129),
and keywords rotate (p. 129).

RGB image mapped onto a plane in 3D

Image data can be scaled to fill a particular rectangle
within a 2D plot coordinate system by specifying the x
and y extent of each pixel. See binary keywords dx
(p- 128) and dy (p. 128). To generate the figure at the
right, the same input image was placed multiple times,
each with a specified dx, dy, and origin. The input PNG 100
image of a building is 50x128 pixels. The tall building

was drawn by mapping this using dx=0.5 dy=1.5. The 50
short building used a mapping dx=0.5 dy=0.35.

Rescaled image used as plot element
200 200

Building Heights|
by Neighborhood

150 150
100

50

0 | .
The image style handles input pixels containing a Downtown S NE Suburbs

grayscale or color palette value. Thus 2D plots (plot command) require 3 columns of data (x,y,value),
while 3D plots (splot command) require 4 columns of data (x,y,z,value).

0

The rgbimage style handles input pixels that are described by three separate values for the red, green,
and blue components. Thus 5D data (x,y,r,g,b) is needed for plot and 6D data (x,y,z,r,g,b) for splot.
The individual red, green, and blue components are assumed to lie in the range [0:255]. This matches the
convention used in PNG and JPEG files (see binary filetype (p. 127)). However some data files use an
alternative convention in which RGB components are floating point values in the range [0:1]. To use the
rgbimage style with such data, first use the command set rgbmax 1.0.

The rgbalpha style handles input pixels that contain alpha channel (transparency) information in addition to
the red, green, and blue components. Thus 6D data (x,y,r,g,b,a) is needed for plot and 7D data (x,y,z,r,g,b,a)
for splot. The r, g, b, and alpha components are assumed to lie in the range [0:255]. To plot data for which
RGBA components are floating point values in the range [0:1], first use the command set rgbmax 1.0.

If only a single data column is provided for the color components of either rgbimage or rgbalpha plots, it
is interpreted as containing 32 bit packed ARGB data using the convention that alpha=0 means opaque
and alpha=255 means fully transparent. Note that this is backwards from the alpha convention if alpha is
supplied in a separate column, but matches the ARGB packing convention for individual commands to set
color. See colorspec (p. 62).

Transparency

The rgbalpha plotting style assumes that each pixel of input data contains an alpha value in the range
[0:255]. A pixel with alpha = 0 is purely transparent and does not alter the underlying contents of the plot.
A pixel with alpha = 255 is purely opaque. All terminal types can handle these two extreme cases. A pixel
with 0 < alpha < 255 is partially transparent. Terminal types that do not support partial transparency will
round this value to 0 or 255.

Image pixels

Some terminals use device- or library-specific optimizations to render image data within a rectangular 2D
area. This sometimes produces undesirable output, e.g. inter-pixel smoothing, bad clipping or missing

gnuplot 5.5 93

edges. An example of this is the smoothing applied by web browsers when rendering svg images. The pixels
keyword tells gnuplot to use generic code to render the image pixel-by-pixel. This rendering mode is slower
and may result in larger output files, but should produce a consistent rendered view on all terminals. It may
in particular be preferable for heatmaps with a small number of pixels. Example:

plot ’data’ with image pixels

Impulses

The impulses style displays a vertical line from y=0
to the y value of each point (2D) or from z=0 to the z with impulses
value of each point (3D). Note that the y or z values may
be negative. Data from additional columns can be used
to control the color of each impulse. To use this style ‘

effectively in 3D plots, it is useful to choose thick lines
(linewidth > 1). This approximates a 3D bar chart. | | |

1 column: y
2 columns:

line from [x,0] to [x,y] (2D)

z # line from [x,y,0] to [x,y,z] (3D)

Xy
3 columns: x y

Labels

The labels style reads coordinates and text from a data
file and places the text string at the corresponding 2D
or 3D position. 3 or 4 input columns of basic data are
required. Additional input columns may be used to pro-
vide properties that vary point by point such as text
rotation angle (keywords rotate variable) or color (see
textcolor variable (p. 63)).

Bordeaux

3 columns: x y string # 2D version
4 columns: x y z string # 3D version

The font, color, rotation angle and other properties of the printed text may be specified as additional
command options (see set label (p. 187)). The example below generates a 2D plot with text labels
constructed from the city whose name is taken from column 1 of the input file, and whose geographic
coordinates are in columns 4 and 5. The font size is calculated from the value in column 3, in this case the
population.

CityName (String,Size) = sprintf ("{/=d %s}", Scale(Size), String)
plot ’cities.dat’ using 5:4:(CityName(stringcolumn(1),$3)) with labels

If we did not want to adjust the font size to a different size for each city name, the command would be much
simpler:

plot ’cities.dat’ using 5:4:1 with labels font "Times,8"

If the labels are marked as hypertext then the text only appears if the mouse is hovering over the corre-
sponding anchor point. See hypertext (p. 189). In this case you must enable the label’s point attribute
so that there is a point to act as the hypertext anchor:

plot ’cities.dat’ using 5:4:1 with labels hypertext point pt 7

94 gnuplot 5.5

The labels style can also be used in place of the points
style when the set of predefined point symbols is not with labels
suitable or not sufficiently flexible. For example, here
we define a set of chosen single-character symbols and
assign one of them to each point in a plot based on the 4
value in data column 3:

set encoding utf8
symbol(z) = "ed+OM&OO" [int (z) :int(z)] 10)

splot ’file’ using 1:2:(symbol($3)) with labels y - +

This example shows use of labels with variable rotation angle in column 4 and textcolor ("tc") in column 5.
Note that variable color is always taken from the last column in the using specifier.

plot $Data using 1:2:3:4:5 with labels tc variable rotate variable

Lines

The lines style connects adjacent points with straight
line segments. It may be used in either 2D or 3D plots.
The basic form requires 1, 2, or 3 columns of input data.
Additional input columns may be used to provide infor-
mation such as variable line color (see rgbcolor vari-
able (p. 63)).

2D form (no "using" spec)

with lines

1 column: y
2 columns: x y

implicit x from row number

3D form (no "using" spec)
1 column: z
3 columns: x y =z

implicit x from row, y from index

See also linetypes (p. 61), linewidth (p. 227), and linestyle (p. 227).

Linespoints

The linespoints style (short form lp) connects adjacent

points with straight line segments and then goes back
to draw a small symbol at each point. Points are drawn

with linespoints —©—

pointinterval -2
with Ip pt "o pi -1

o (04

with the default size determined by set pointsize unless
a specific point size is given in the plot command or a
variable point size is provided in an additional column
of input data. Additional input columns may also be
used to provide information such as variable line color.
See lines (p. 94) and points (p. 96).

Two keywords control whether or not every point in the
plot is marked with a symbol, pointinterval (short form pi) and pointnumber (short form pn).

pi N or pi -N tells gnuplot to only place a symbol on every Nth point. A negative value for N will erase
the portion of line segment that passes underneath the symbol. The size of the erased portion is controlled
by set pointintervalbox.

pn N or pn -N tells gnuplot to label only N of the data points, evenly spaced over the data set. As with
Pi, a negative value for N will erase the portion of line segment that passes underneath the symbol.

gnuplot 5.5 95

Masking

The plotting style with mask is used to define a masking region that can be applied to pm3d surfaces or
to images specified later in the same plot or splot command. Input data is interpreted as a stream of [x,y]
or [x,y,z] coordinates defining the vertices of one or more polygons. As in plotting style with polygons,
polygons are separated by a blank line. If the mask is part of a 3D (splot) command then a column of z
values is required on input but is currently not used for anything.

If a mask definition is present in the plot command, then any subsequent image or pm3d surface in the
same command can be masked by adding the keyword mask. If no mask has been defined, this keyword is
ignored.

This example illustrates using the convex hull circumscribing a set of points to mask the corresponding
region of a pm3d surface.

set table $HULL Cluster of points pm3d surface masked by
plot $POINTS us ing 1:2 convexhull defining the mask region convex hull of the cluster

unset table

set view map
set multiplot layout 1,2
splot $POINTS using 1:2:3 with pm3d, \
$POINTS using 1:2:(0) nogrid with points
splot $HULL using 1:2:(0) with mask, \
$POINTS using 1:2:3 mask with pm3d
unset multiplot

The splot command for the first panel renders the unmasked surface created by dgrid3d from the original
points and then the points themselves, in that order. The splot command for the second panel renders the
masked surface. Note that definition of the mask must come first (plot with mask), followed by the pm3d
surface it applies to (plot style with pm3d modified by the mask keyword). A more complete version of
this example is in the demo collection mask_pm3d.dem

Although it is not shown here, a single mask can include multiple polygonal regions.

The masking commands are EXPERIMENTAL. Details may change before inclusion in a stable release
version.

Parallelaxes

Parallel axis plots can highlight correlation in a multi-
dimensional data set. Individual columns of input data
are each associated with a separately scaled vertical axis.
If all columns are drawn from a single file then each line
on the plot represents values from a single row of data in
that file. It is common to use some discrete categoriza-
tion to assign line colors, allowing visual exploration of
the correlation between this categorization and the axis
dimensions.

=NWhAUID

Syntax: axis 1 axis 2 axis 3 axis 4

set style data parallelaxes
plot $DATA using coll{:varcoll} {at <xpos>} {<line properties}, \
$DATA using col2,

CHANGE: Version 5.4 of gnuplot introduced a change in the syntax for plot style parallelaxes. The revised
syntax allows an unlimited number of parallel axes.

http://www.gnuplot.info/demo/mask_pm3d.html

96 gnuplot 5.5

gnuplot 5.2: plot $DATA using 1:2:3:4:5 with parallelaxes
gnuplot 5.4: plot for [col=1:5] $DATA using col with parallelaxes

The new syntax also allows explicit placement of the parallel vertical axes along the x axis as in the example
below. If no explicit x coordinate is provide axis N will be placed at x=N.

array xpos([5] = [1, 5, 6, 7, 11, 12]

plot for [col=1:5] $DATA using col with parallelaxes at xpos[col]

By default gnuplot will automatically determine the range and scale of the individual axes from the input
data, but the usual set axis range commands can be used to customize this. See set paxis (p. 212).

Polar plots

Polar plots are generated by changing the current coordi-))

nate system to polar before issuing a plot command. The w2 ";’,‘i‘;‘f;?gliﬂ;?;,iff
option set polar tells gnuplot to interpret input 2D co-

ordinates as <angle>,<radius> rather than <x>,<y>.

Many, but not all, of the 2D plotting styles work in po-

lar mode. The figure shows a combination of plot styles n 0

lines and filledcurves. See set polar (p. 218), set

rrange (p. 221), set size square (p. 222), set theta

(p. 233), set ttics (p. 237).

Polar heatmaps can be generated using plot style with
surface together with set polar grid.

set size square
set angle degrees
set rtics

set grid polar \ ’e €3
set palette cubehelix negative gamma 0.8 |)
set polar grid gauss kdensity scale 35 (—H ‘
set polar grid theta [0:190] | 50_J00 150 200
plot DATA with surface, DATA with points pt 7

Points

The points style displays a small symbol at each point.

The command set pointsize may be used to change the with points ps variable O

default size of all points. The point type defaults to that O

of the linetype. See linetypes (p. 61). If no using spec

is found in the plot command, input data columns are O o O ®

interpreted implicitly in the order O
X y pointsize pointtype color

Any columns beyond the first two (x and y) are optional; O o O
they correspond to additional plot properties pointsize O
variable, pointtype variable, etc.

The first 8 point types are shared by all terminals. Individual terminals may provide a much larger number
of distinct point types. Use the test command to show what is provided by the current terminal settings.

Alternatively any single printable character may be given instead of a numerical point type, as in the example
below. You may use any unicode character as the pointtype (assumes utf8 support). See escape sequences
(p- 40). Longer strings may be plotted using plot style labels rather than points.

gnuplot 5.5 97

plot f(x) with points pt "#"
plot d(x) with points pt "\U+2299"

When using the keywords pointtype, pointsize, or linecolor in a plot command, the additional keyword
variable may be given instead of a number. In this case the corresponding properties of each point are
assigned by additional columns of input data. Variable pointsize is always taken from the first additional
column provided in a using spec. Variable color is always taken from the last additional column. See
colorspec (p. 62). If all three properties are specified for each point, the order of input data columns is
thus

plot DATA using x:y:pointsize:pointtype:color \
with points lc variable pt variable ps variable

Note: for information on user-defined program variables, see variables (p. 56).

Polygons

2D plots:
plot DATA {using 1:2} with polygons

plot with polygons is currently treated as plot with filledcurves closed. Each polygon may be assigned
a separate color by providing a third using specifier and the keywords lc variable (value is interpreted as
a linetype) or lc rgb variable (value is interpreted as a 24-bit RGB color). Ounly the color value from the
first vertex of the polygon is used.

3D plots:

splot DATA {using x:y:z} with polygons
{fillstyle <fillstyle spec>}
{fillcolor <colorspec>}

splot with polygons uses pm3d to render individual triangles, quadrangles, and larger polygons in 3D.
These may be facets of a 3D surface or isolated shapes. The code assumes that the vertices lie in a plane.
Vertices defining individual polygons are read from successive records of the input file. A blank line separates
one polygon from the next.

The fill style and color may be specified in the splot command, otherwise the global fillstyle from set style
fill is used. Due to limitations in the pm3d code, a single border line style from set pm3d border is applied
to all polygons. This restriction may be removed in a later gnuplot version.

Each polygon may be assigned a separate RGB color by providing a fourth using specifier and the keywords
lc variable (value is interpreted as a linetype) or lc rgb variable (value is interpreted as a 24-bit RGB
color). Only the color value from the first vertex of the polygon is used.

pm3d sort order and lighting are applied to the faces. It is probably always desirable to use set pm3d
depthorder.

set xyplane at O

set view equal xyz

unset border

unset tics

set pm3d depth

set pm3d border 1lc "black" 1w 1.5

splot ’icosahedron.dat’ with polygons \
fs transparent solid 0.8 fc bgnd

98 gnuplot 5.5

Rgbalpha

See image (p. 91).

Rgbimage

See image (p. 91).

Spiderplot

Spider plots are essentially parallel axis plots in which the axes are arranged radially rather than vertically.
Such plots are sometimes called rader charts. In gnuplot this requires working within a coordinate system
established by the command set spiderplot, analogous to set polar except that the angular coordinate is
determined implicitly by the parallel axis number. The appearance, labelling, and tic placement of the axes
is controlled by set paxis. Further style choices are controlled using set style spiderplot (p. 230), set
grid (p. 177), and the individual components of the plot command.

Because each spider plot corresponds to a row of data rather than a column, it would make no sense to
generate key entry titles in the normal way. Instead, if a plot component contains a title the text is used to
label the corresponding axis. This overrides any previous set paxis n label "Foo". To place a title in the
key, you can either use a separate keyentry command or extract text from a column in the input file with
the key(column) using specifier. See keyentry (p. 184), using key (p. 142).

In this figure a spiderplot with 5 axes is used to compare multiple entities that are each characterized by
five scores. Each line (row) in $DATA generates a new polygon on the plot.

set spiderplot Score 1
set style spiderplot fs transparent solid 0.2 border 100 E— George
. 7 Harriet
set for [p=1:5] paxis p range [0:100] 80
=) i 1 nn 60
set for [p=2:5] paxis p t%cs format Score s S Score 2
set paxis 1 tics font ",9"

set for [p=1:5] paxis p label sprintf("Score %d",p)
set grid spiderplot
plot for [i=1:5] $DATA using i:key(1)

Score 4 Score 3
Newspiderplot

Normally the sequential elements of a plot command with spiderplot each correspond to one vertex of a
single polygon. In order to describe multiple polygons in the same plot command, they must be separated
by newspiderplot. Example:

One polygon with 10 vertices

plot for [i=1:5] ’A’ using i, for [j=1:5] ’B’ using j

Two polygons with 5 vertices

plot for [i=1:5] ’A’ using i, newspiderplot, for [j=1:5] ’B’ using j

Steps

gnuplot 5.5 99

The steps style is only relevant to 2D plotting. It con-
nects consecutive points with two line segments: the first with fillsteps
from (x1,y1) to (x2,y1) and the second from (x2,y1) to d‘;’tia‘hpztien‘iz Y
(x2,y2). The input column requires are the same as for

plot styles lines and points. The difference between |
fsteps and steps is that fsteps traces first the change
in y and then the change in x. steps traces first the
change in x and then the change in y. To fill the area

between the curve and the baseline at y=0, use fillsteps. _l_'_'_

See also steps demo.

Surface

The plot style with surface has two uses.

In 3D plots, with surface always produces a surface. If a 3D data set is recognizable as a mesh (grid) then
by default the program implicitly treats the plot style with lines as requesting a gridded surface, making
with lines a synonym for with surface. However the command set surface explicit suppresses this
treatment, in which case with surface and with lines become distinct styles that may be used in the same
plot.

In 2D polar mode plots, with surface is used to produce a solid fill gridded represention of the data.
Generation of the surface is controlled using the command set polar grid (p. 219).

Vectors

The 2D vectors style draws a vector from (x,y) to 35— Vector field F(xy) = (ky-kx)

(x+xdelta,y+ydelta). The 3D vectors style is similar, /

but requires six columns of basic data. In both cases, ~~ \
an additional input column (5th in 2D, 7th in 3D) may / /.

be used to provide variable (per-datapoint) color infor- T X
mation. (see linecolor (p. 62) and rgbcolor variable | b+ { L ‘
(p. 63)). A small arrowhead is drawn at the end of each e ! 3

vector. \\ T Y /

4 columns: x y xdelta ydelta) //
6 columns: x y 2z xdelta ydelta zdelta 3—

The keywords "with vectors" may be followed by inline arrow style properties, by reference to a predefined
arrow style, or by a request to read the index of the desired arrow style for each vector from a separate input
column. See the first three examples below.

Examples:
plot ... using 1:2:3:4 with vectors filled heads
plot ... using 1:2:3:4 with vectors arrowstyle 3

plot ... using 1:2:3:4:5 with vectors arrowstyle variable
splot ’file.dat’ using 1:2:3:(1):(1):(1) with vectors filled head 1lw 2

Notes: You cannot mix the arrowstyle keyword with other line style qualifiers in the plot command. An
additional column of color values is required if the arrow style includes lc variable or lc rgb variable.

splot with vectors is supported only for set mapping cartesian. set clip one and set clip two affect
vectors drawn in 2D. See set clip (p. 160) and arrowstyle (p. 223).

See also the 2D plot style with arrows (p. 77) that is identical to with vectors (p. 99) except that each
arrow is specified using x:y:length:angle.

http://www.gnuplot.info/demo/steps.html

100 gnuplot 5.5

Xerrorbars

The xerrorbars style is only relevant to 2D data plots.
xerrorbars is like points, except that a horizontal er-
ror bar is also drawn. At each point (x,y), a line is
drawn from (xlow,y) to (xhigh,y) or from (x-xdelta,y)
to (x+xdelta,y), depending on how many data columns
are provided. The appearance of the tic mark at the
ends of the bar is controlled by set errorbars. The
basic style requires either 3 or 4 columns:

3 columns: x y xdelta
4 columns: x y xlow <xhigh

with xerrorbars —+—

An additional input column (4th or 5th) may be used to provide variable color.

Xyerrorbars

The xyerrorbars style is only relevant to 2D data plots.
xyerrorbars is like points, except that horizontal and
vertical error bars are also drawn. At each point (x,y),
lines are drawn from (x,y-ydelta) to (x,y+ydelta) and
from (x-xdelta,y) to (x+xdelta,y) or from (x,ylow) to
(x,yhigh) and from (xlow,y) to (xhigh,y), depending
upon the number of data columns provided. The ap-
pearance of the tic mark at the ends of the bar is con-
trolled by set errorbars. Either 4 or 6 input columns
are required.

4 columns: x y xdelta ydelta
6 columns: x y xlow xhigh ylow yhigh

If data are provided in an unsupported mixed form, the using specifier of the plot command should be used
to set up the appropriate form. For example, if the data are of the form (x,y,xdelta,ylow,yhigh), then you

can use

1

with xyerrorbars —+—

+%+%%%¢

+
+

plot ’data’ using 1:2:($1-$3):($1+$3):4:5 with xyerrorbars

An additional input column (5th or 7th) may be used to provide variable (per-datapoint) color information.

Xerrorlines

The xerrorlines style is only relevant to 2D data plots.
xerrorlines is like linespoints, except that a horizontal
error line is also drawn. At each point (x,y), a line is
drawn from (xlow,y) to (xhigh,y) or from (x-xdelta,y) to
(x+xdelta,y), depending on how many data columns are
provided. The appearance of the tic mark at the ends of
the bar is controlled by set errorbars. The basic style
requires either 3 or 4 columns:

3 columns: x y xdelta
4 columns: x y xlow <xhigh

with xerrorlines —+—

An additional input column (4th or 5th) may be used to provide variable color.

gnuplot 5.5 101

Xyerrorlines

The xyerrorlines style is only relevant to 2D data plots.
xyerrorlines is like linespoints, except that horizon- with xyerrorlines
tal and vertical error bars are also drawn. At each point
(x,y), lines are drawn from (x,y-ydelta) to (x,y+ydelta)
and from (x-xdelta,y) to (x+xdelta,y) or from (x,ylow)
to (x,yhigh) and from (xlow,y) to (xhigh,y), depending
upon the number of data columns provided. The ap-
pearance of the tic mark at the ends of the bar is con-
trolled by set errorbars. Either 4 or 6 input columns
are required.

4 columns: x y xdelta ydelta
6 columns: x y xlow xhigh ylow yhigh

If data are provided in an unsupported mixed form, the using specifier of the plot command should be used
to set up the appropriate form. For example, if the data are of the form (x,y,xdelta,ylow,yhigh), then you
can use

plot ’data’ using 1:2:($1-$3):($1+$3):4:5 with xyerrorlines

An additional input column (5th or 7th) may be used to provide variable (per-datapoint) color information.

Yerrorbars

The yerrorbars (or errorbars) style is only relevant
to 2D data plots. yerrorbars is like points, except with yerrorbars +—+—
that a vertical error bar is also drawn. At each point
(x,y), a line is drawn from (x,y-ydelta) to (x,y+ydelta)

or from (x,ylow) to (x,yhigh), depending on how many I . T l i

data columns are provided. The appearance of the tic T {» T i

mark at the ends of the bar is controlled by set error- } %
bars. The clearance between the point and the error J;, .}

bars is controlled by set pointintervalbox.

2 columns: [implicit x] y ydelta
3 columns: x y ydelta
4 columns: x y ylow yhigh

Additional input columns may be used to provide information such as variable point size, point type, or
color.

See also errorbar demo.

Yerrorlines

http://www.gnuplot.info/demo/mgr.html

102 gnuplot 5.5

The yerrorlines (or errorlines) style is only relevant to

2D data plots. yerrorlines is like linespoints, except with yerrorlines +——
that a vertical error line is also drawn. At each point
(x,y), a line is drawn from (x,y-ydelta) to (x,y+ydelta)
or from (x,ylow) to (x,yhigh), depending on how many
data columns are provided. The appearance of the tic
mark at the ends of the bar is controlled by set error-
bars. Either 3 or 4 input columns are required.

3 columns: x y ydelta

4 columns: x y ylow yhigh

An additional input column (4th or 5th) may be used to provide variable color.

See also errorbar demo.

http://www.gnuplot.info/demo/mgr.html

gnuplot 5.5 103

3D plots

3D plots are generated using the command splot rather than plot. Many of the 2D plot styles (points,
images, impulse, labels, vectors) can also be used in 3D by providing an extra column of data containing z
coordinate. Some plot types (pm3d coloring, surfaces, contours) must be generated using the splot command
even if only a 2D projection is wanted.

Surface plots

The styles splot with lines and splot with surface
both generate a surface made from a grid of lines. Solid
surfaces can be generated using the style splot with
pm3d. Usually the surface is displayed at some conve-
nient viewing angle, such that it clearly represents a 3D
surface. See set view (p. 238). In this case the X,
Y, and Z axes are all visible in the plot. The illusion
of 3D is enhanced by choosing hidden line removal. See
hidden3d (p. 178). The splot command can also cal-
culate and draw contour lines corresponding to constant
Z values. These contour lines may be drawn onto the
surface itself, or projected onto the XY plane. See set contour (p. 165).

3D surface with projected contours

2D projection (set view map)

An important special case of the splot command is to projected contours using 'set view map'
map the Z coordinate onto a 2D surface by projecting the -

. . 0.8’ ~—
plot along the Z axis onto the xy plane. See set view 0s 040 ‘ Q\'E'i‘—/

map (p. 238). This plot mode is useful for contour
plots and heat maps. This figure shows contours plotted
once with plot style lines and once with style labels.

PM3D plots

3D surfaces can also be drawn using solid pm3d quad-
rangles rather than lines. In this case there is no hidden
surface removal, but if the component facets are drawn
back-to-front then a similar effect is achieved. See set
pm3d depthorder (p. 215). While pm3d surfaces are
by default colored using a smooth color palette (see set
palette (p. 206)), it is also possible to specify a solid
color surface or to specify distinct solid colors for the
top and bottom surfaces as in the figure shown here. See
pm3d fillcolor (p. 217). Unlike the line-trimming in
hidden3d mode, pm3d surfaces can be smoothly clipped
to the current zrange. See set pm3d clipping (p. 216).

104 gnuplot 5.5

Fence plots

Fence plots combine several 2D plots by aligning their

Y coordinates and separating them from each other by fence plot constructed with zerrorfill
a displacement along X. Filling the area between a base
value and each plot’s series of Z values enhances the
visual impact of the alignment on Y and comparison on
Z. There are several ways such plots can be created in
gnuplot. The simplest is to use the 5 column variant of
the zerrorfill style. Suppose there are separate curves z
= Fi(y) indexed by i. A fence plot is generated by splot
with zerrorfill using input columns

Z value

0.4

0 GaWe

i y z_base z_base Fi(y)

Isosurface

This 3D plot style requires a populated voxel grid (see
set vgrid (p. 237), vfill (p. 266)). Linear interpo-
lation of voxel grid values is used to estimate fractional
grid coordinates corresponding to the requested isolevel.
These points are then used to generate a tessellated sur-
face. The facets making up the surface are rendered as
pm3d polygons, so the surface coloring, transparency,
and border properties are controlled by set pm3d. In
general the surface is easier to interpret visually if facets
are given a thin border that is darker than the fill color.
By default the tessellation uses a mixture of quadrangles
and triangles. To use triangle only, see set isosurface (p. 180). Example:

set style fill solid 0.3
set pm3d depthorder border 1lc "blue" 1lw 0.2
splot $helix with isosurface level 10 fc "cyan"

isosurface generated from voxel data

Zerrorfill

Syntax:

splot DATA using 1:2:3:4[:5] with zerrorfill {fc|fillcolor <colorspec>}
{1t|linetype <n>} {<line properties>}

The zerrorfill plot style is similar to one variant of the 2D plot style filledcurves. It fills the area between
two functions or data lines that are sampled at the same x and y points. It requires 4 or 5 input columns:

4 columns: x y =z zdelta
5 columns: x y =z zlow =zhigh

gnuplot 5.5 105

The area between zlow and zhigh is filled and then a line
is drawn through the z values. By default both the line 1000
and the fill area use the same color, but you can change
this in the splot command. The fill area properties are 100
also affected by the global fill style; see set style fill
(p. 226). 10

If there are multiple curves in the splot command each
new curve may occlude all previous curves. To get
proper depth sorting so that curves can only be oc-
cluded by curves closer to the viewer, use set pm3d
depthorder base. Unfortunately this causes all the filled areas to be drawn after all of the corresponding
lines of z values. In order to see both the lines and the depth-sorted fill areas you probably will need to make
the fill areas partially transparent or use pattern fill rather than solid fill.

~ X =
LU L | I 1}
= NWwWhsOU

-

The fill area in the first two examples below is the same.

splot ’data’ using 1:2:3:4 with zerrorfill fillcolor "grey" 1t black
splot ’data’ using 1:2:3:($3-$4):($3+$4) with zerrorfill

splot ’+’ using 1:(const):(funcl($1)):(func2($1)) with zerrorfill
splot for [k=1:5] datafile[k] with zerrorfill 1t black fc 1t (k+1)

This plot style can also be used to create fence plots. See fenceplots (p. 104).

Animation

Any of gnuplot’s interactive terminals (qt win wxt x11 aqua) can be used to display an animation by plotting
successive frames from the command line or from a script.

Several non-mousing terminals also support some form of animation. See term sixelgd animate (p. 310),
term domterm animate (p. 281).

Two terminals can save an animation to a file for later playback locally or by embedding it a web page. See
term gif animate (p. 289), term webp (p. 315).

Example:

unset border; unset tics; unset key; set view equal xyz
set pm3d border linecolor "black"

set term webp animate delay 50
set output ’spinning_d20.webp’
do for [ang=1:360:2] {
set view 60, ang
splot ’icosahedron.dat’ with polygons fc "gold"
by

unset output

106 gnuplot 5.5

Part 111

Commands

This section lists the commands acceptable to gnuplot in alphabetical order. Printed versions of this
document contain all commands; the text available interactively may not be complete. Indeed, on some
systems there may be no commands at all listed under this heading.

Note that in most cases unambiguous abbreviations for command names and their options are permissible,
ie, "p f(x) w li" instead of "plot f(x) with lines".

In the syntax descriptions, braces ({}) denote optional arguments and a vertical bar (|) separates mutually
exclusive choices.

Break

The break command is only meaningful inside the bracketed iteration clause of a do or while statement.
It causes the remaining statements inside the bracketed clause to be skipped and iteration is terminated.
Execution resumes at the statement following the closing bracket. See also continue (p. 108).

Cd

The c¢d command changes the working directory.

Syntax:
cd ’<directory-name>’

The directory name must be enclosed in quotes.

Examples:
cd ’subdir’
Cd n .. n

It is recommended that Windows users use single-quotes, because backslash [\] has special significance inside
double-quotes and has to be escaped. For example,

cd "c:\newdata"

fails, but

cd ’c:\newdata’
cd "c:\\newdata"

work as expected.

Call

The call command is identical to the load command with one exception: the name of the file being loaded
may be followed by up to nine parameters. EXPERIMENTAL: Commands can be read from a datablock
rather than a file.

call "inputfile" <param-1> <param-2> <param-3> ... <param-9>

Previous versions of gnuplot performed macro-like substitution of the special tokens $0, $1, ... $9 with the
literal contents of these parameters. This mechanism is now deprecated (see call old-style (p. 108)).

gnuplot 5.5 107

Gnuplot now provides a set of string variables ARG0, ARG1, ..., ARG9 and an integer variable ARGC.
When a call command is executed ARGO is set to the name of the input file, ARGC is set to the number
of parameters present, and ARG1 to ARG are loaded from the parameters that follow it on the command
line. Any existing contents of the ARG variables are saved and restored across a call command.

Because the parameters ARG1 ... ARGY are stored in ordinary string variables they may be dereferenced
by macro expansion (analogous to the older deprecated syntax). However in many cases it is more natural
to use them as you would any other variable.

In parallel the string parameters ARG1 ... ARGY the passed parameters are stored in an array ARGVI[9].
See argv (p. 107).

Argv] |

When a gnuplot script is entered via the call command any parameters passed by the caller are available via
two mechanisms. Each parameter is stored as a string in variables ARG1, ARG2, ... ARG9. Each parameter
is also stored as one element of the array ARGV[9]. Numerical values are stored as complex variables. All
other values are stored as strings. ARGC holds the number of parameters. Thus after a call

call ’routine_1.gp’ 1 pi "title"

The three arguments are available inside routine_1.gp as follows

ARGC = 3

ARG1 = "1" ARGV[1] = 1.0

ARG2 = "3.14159" ARGV[2] = 3.14159265358979. ..
ARG3 = "title" ARGV[3] = "title"

In this example ARGVJ[1] and ARGV[2] have the full precision of a floating point variable. ARG2 lost
precision in being stored as a string using format "%g".

Example
Call site
MYFILE = "scriptl.gp"
FUNC = "sin(x)"
call MYFILE FUNC 1.23 "This is a plot title"
Upon entry to the called script
ARGO holds "scriptl.gp"
ARG1 holds the string "sin(x)"
ARG2 holds the string "1.23"
ARG3 holds the string "This is a plot title"
ARGC is 3
The script itself can now execute
plot @ARG1 with lines title ARG3
print ARG2 * 4.56, QARG2 * 4.56
print "This plot produced by script ", ARGO

Notice that because ARG is a string it must be dereferenced as a macro, but ARG2 may be dereferenced
either as a macro (yielding a numerical constant) or a variable (yielding that same numerical value after
auto-promotion of the string "1.23" to a real).

The same result could be obtained directly from a shell script by invoking gnuplot with the -c command line
option:

gnuplot -persist -c "scriptl.gp" "sin(x)" 1.23 "This is a plot title"

108 gnuplot 5.5

Old-style

[DEPRECATED)] This describes the call mechanism used by old versions of gnuplot.

call "<input-file>" <param-0> <param-1> ... <param-9>

The name of the input file must be enclosed in quotes. As each line is read from the input file, it is scanned
for the following special character sequences: $0 $1 $2 $3 $4 $5 $6 $7 $8 $9 $#. If found, the sequence
$-+digit is replaced by the corresponding parameter from the call command line. Quote characters are not
copied and string variable substitution is not performed. The character sequence $# is replaced by the
number of passed parameters. $ followed by any other character is treated as an escape sequence; use $$ to
get a single $.

Example:
If the file ’calltest.gp’ contains the line:
print "argc=$# p0=$0 p1=%$1 p2=$2 p3=$3 p4=%$4 p5=$5 p6=%$6 p7=x3$7x"

entering the command:

call ’calltest.gp’ "abcd" 1.2 + "’quoted’" -- "$2"

will display:
argc=7 pO=abcd pl=1.2 p2=+ p3=’quoted’ pd=- pb=- p6=$2 p7=xx

NOTES: This use of the $ character conflicts both with gnuplot’s own syntax for datafile columns and
with the use of $ to indicate environmental variables in a unix-like shell. The special sequence $# was
mis-interpreted as a comment delimiter in gnuplot versions 4.5 through 4.6.3. Quote characters are ignored
during substitution, so string constants are easily corrupted.

Clear

The clear command erases the current screen or output device as specified by set terminal and set output.
This usually generates a formfeed on hardcopy devices.

For some terminals clear erases only the portion of the plotting surface defined by set size, so for these it
can be used in conjunction with set multiplot to create an inset.

Example:

set multiplot
plot sin(x)

set origin 0.5,0.5
set size 0.4,0.4
clear

plot cos(x)

unset multiplot

Please see set multiplot (p. 197), set size (p. 222), and set origin (p. 204) for details.

Continue

The continue command is only meaningful inside the bracketed iteration clause of a do or while statement.
It causes the remaining statements inside the bracketed clause to be skipped. Execution resumes at the start
of the next iteration (if any remain in the loop condition). See also break (p. 106).

gnuplot 5.5 109

Do

Syntax:
do for <iteration-spec> {
<commands>
<commands>

}

Execute a sequence of commands multiple times. The commands must be enclosed in curly brackets, and
the opening "{" must be on the same line as the do keyword. This command cannot be used with old-
style (un-bracketed) if/else statements. See if (p. 120). For examples of iteration specifiers, see iteration
(p. 60). Example:
set multiplot layout 2,2
do for [name in "A B C D"] {
filename = name . ".dat"
set title sprintf("Condition %s",name)
plot filename title name
}

unset multiplot

See also while (p. 267), continue (p. 108), break (p. 106).

Evaluate

The evaluate command executes gnuplot commands contained in a string. Newline characters are not
allowed within the string.

evaluate "commands in a string constant"
evaluate <commands produced by a string-valued expression>

This is especially useful for a repetition of similar commands.

Example:
set_label(x, y, text) \
= sprintf("set label ’%s’ at %f, %f point pt 5", text, x, y)
eval set_label(l., 1., ’one/one’)
eval set_label(2., 1., ’two/one’)
eval set_label(l., 2., ’one/two’)

Please see function blocks (p. 118) and substitution macros (p. 71) for other mechanisms that con-
struct or execute strings containing gnuplot commands.

Exit
exit
exit message "error message text"
exit status <integer error code>

The commands exit and quit, as well as the END-OF-FILE character (usually Ctrl-D) terminate input from
the current input stream: terminal session, pipe, or file input (pipe). If input streams are nested (inherited
load scripts), then reading will continue in the parent stream. When the top level stream is closed, the
program itself will exit.

The command exit gnuplot will immediately and unconditionally cause gnuplot to exit even if the input
stream is multiply nested. In this case any open output files may not be completed cleanly. Example of use:

110 gnuplot 5.5

bind "ctrl-x" "unset output; exit gnuplot"

The command exit error "error message" simulates a program error. In interactive mode it prints the
error message and returns to the command line, breaking out of all nested loops or calls. In non-interactive
mode the program will exit.

When gnuplot exits to the controlling shell, the return value is not usually informative. This variant of the
command allows you to return a specific value.

exit status <value>

See help for batch/interactive (p. 35) for more details.

Fit

The fit command fits a user-supplied real-valued expression to a set of data points, using the nonlinear
least-squares Marquardt-Levenberg algorithm. There can be up to 12 independent variables, there is always
1 dependent variable, and any number of parameters can be fitted. Optionally, error estimates can be input
for weighting the data points.

The basic use of fit is best explained by a simple example:

f(x) = a + bxx + c*x**2
fit f(x) ’measured.dat’ using 1:2 via a,b,c
plot ’measured.dat’ u 1:2, f(x)

Syntax:

fit {<ranges>} <expression>
’<datafile>’ {datafile-modifiers}
{{unitweights} | {ylxylz}terror | errors <vari>{,<var2>,...}}
via ’<parameter file>’ | <vari>{,<var2>,...}

Ranges may be specified to filter the data used in fitting. Out-of-range data points are ignored. The syntax
is

[{dummy_variable=}{<min>}{:<max>}],

analogous to plot; see plot ranges (p. 143).

<expression> can be any valid gnuplot expression, although the most common is a previously user-defined
function of the form f(x) or f(x,y). It must be real-valued. The names of the independent variables are set
by the set dummy command, or in the <ranges> part of the command (see below); by default, the first
two are called x and y. Furthermore, the expression should depend on one or more variables whose value is
to be determined by the fitting procedure.

<datafile> is treated as in the plot command. All the plot datafile modifiers (using, every,...) except
smooth are applicable to fit. See plot datafile (p. 129).

The datafile contents can be interpreted flexibly by providing a using qualifier as with plot commands. For
example to generate the independent variable x as the sum of columns 2 and 3, while taking z from column
6 and requesting equal weights:

fit ... using ($2+$3):6

In the absence of a using specification, the fit implicitly assumes there is only a single independent variable.
If the file itself, or the using specification, contains only a single column of data, the line number is taken as
the independent variable. If a using specification is given, there can be up to 12 independent variables (and
more if specially configured at compile time).

gnuplot 5.5 111

The unitweights option, which is the default, causes all data points to be weighted equally. This can be
changed by using the errors keyword to read error estimates of one or more of the variables from the data
file. These error estimates are interpreted as the standard deviation s of the corresponding variable value
and used to compute a weight for the datum as 1/s**2.

In case of error estimates of the independent variables, these weights are further multiplied by fitting function
derivatives according to the "effective variance method" (Jay Orear, Am. J. Phys., Vol. 50, 1982).

The errors keyword is to be followed by a comma-separated list of one or more variable names for which
errors are to be input; the dependent variable z must always be among them, while independent variables
are optional. For each variable in this list, an additional column will be read from the file, containing that
variable’s error estimate. Again, flexible interpretation is possible by providing the using qualifier. Note
that the number of independent variables is thus implicitly given by the total number of columns in the
using qualifier, minus 1 (for the dependent variable), minus the number of variables in the errors qualifier.

As an example, if one has 2 independent variables, and errors for the first independent variable and the
dependent variable, one uses the errors x,z qualifier, and a using qualifier with 5 columns, which are
interpreted as x:y:z:sx:sz (where x and y are the independent variables, z the dependent variable, and sx and
sz the standard deviations of x and z).

A few shorthands for the errors qualifier are available: yerrors (for fits with 1 column of independent
variable), and zerrors (for the general case) are all equivalent to errors z, indicating that there is a single
extra column with errors of the dependent variable.

xyerrors, for the case of 1 independent variable, indicates that there are two extra columns, with errors of
both the independent and the dependent variable. In this case the errors on x and y are treated by Orear’s
effective variance method.

Note that yerror and xyerror are similar in both form and interpretation to the yerrorlines and xyer-
rorlines 2D plot styles.

With the command set fit v4 the fit command syntax is compatible with gnuplot version 4. In this case
there must be two more using qualifiers (z and s) than there are independent variables, unless there is only
one variable. gnuplot then uses the following formats, depending on the number of columns given in the
using specification:

z # 1 independent variable (line number)

X:z # 1 independent variable (1st column)

X:z:8 # 1 independent variable (3 columns total)
X:y:z:s # 2 independent variables (4 columns total)
x1:x2:x3:2:8 # 3 independent variables (5 columns total)
x1:x2:x3:...:xN:z:s # N independent variables (N+2 columns total)

Please beware that this means that you have to supply z-errors s in a fit with two or more independent
variables. If you want unit weights you need to supply them explicitly by using e.g. then format x:y:z:(1).

The dummy variable names may be changed when specifying a range as noted above. The first range
corresponds to the first using spec, and so on. A range may also be given for z (the dependent variable),
in which case data points for which f(x,...) is out of the z range will not contribute to the residual being
minimized.

Multiple datasets may be simultaneously fit with functions of one independent variable by making y a
‘pseudo-variable’; e.g., the dataline number, and fitting as two independent variables. See fit multi-branch
(p. 116).

The via qualifier specifies which parameters are to be optimized, either directly, or by referencing a parameter
file.

Examples:
f(x) = axx**2 + bxx + c
g(x,y) = a*x**2 + bky**2 + ckxxy
set fit limit le-6

112 gnuplot 5.5

fit f(x) ’measured.dat’ via ’start.par’

fit f(x) ’measured.dat’ using 3:($7-5) via ’start.par’

fit f(x) ’./data/trash.dat’ using 1:2:3 yerror via a, b, c

fit g(x,y) ’surface.dat’ using 1:2:3 via a, b, ¢

fit a0 + al*x/(1 + a2*x/(1 + a3*x)) ’measured.dat’ via a0,al,a2,a3
fit a*x + bxy ’surface.dat’ using 1:2:3 via a,b

fit [*:%x] [yaks=*:%*] a*x+b*yaks ’surface.dat’ u 1:2:3 via a,b

fit [1[][t=*:*%] a*x + b*y + c*t ’foo.dat’ using 1:2:3:4 via a,b,c

set dummy x1, x2, x3, x4, x5
h(x1,x2,x3,x4,85) = a*xl + b*x2 + c*x3 + d*x4 + ex*xb
fit h(x1,x2,x3,x4,x5) ’foo.dat’ using 1:2:3:4:5:6 via a,b,c,d,e

After each iteration step, detailed information about the current state of the fit is written to the display.
The same information about the initial and final states is written to a log file, "fit.log". This file is always
appended to, so as to not lose any previous fit history; it should be deleted or renamed as desired. By using
the command set fit logfile, the name of the log file can be changed.

If activated by using set fit errorvariables, the error for each fitted parameter will be stored in a variable
named like the parameter, but with "_err" appended. Thus the errors can be used as input for further
computations.

If set fit prescale is activated, fit parameters are prescaled by their initial values. This helps the Marquardt-
Levenberg routine converge more quickly and reliably in cases where parameters differ in size by several orders
of magnitude.

The fit may be interrupted by pressing Ctrl-C (Ctrl-Break in wgnuplot). After the current iteration com-
pletes, you have the option to (1) stop the fit and accept the current parameter values, (2) continue the fit,
(3) execute a gnuplot command as specified by set fit script or the environment variable FIT_SCRIPT.
The default is replot, so if you had previously plotted both the data and the fitting function in one graph,
you can display the current state of the fit.

Once fit has finished, the save fit command may be used to store final values in a file for subsequent use as
a parameter file. See save fit (p. 152) for details.

Adjustable parameters

There are two ways that via can specify the parameters to be adjusted, either directly on the command line
or indirectly, by referencing a parameter file. The two use different means to set initial values.

Adjustable parameters can be specified by a comma-separated list of variable names after the via keyword.
Any variable that is not already defined is created with an initial value of 1.0. However, the fit is more likely
to converge rapidly if the variables have been previously declared with more appropriate starting values.

In a parameter file, each parameter to be varied and a corresponding initial value are specified, one per line,
in the form

varname = value

Comments, marked by '#’, and blank lines are permissible. The special form

varname = value # FIXED

means that the variable is treated as a ’fixed parameter’, initialized by the parameter file, but not adjusted by
fit. For clarity, it may be useful to designate variables as fixed parameters so that their values are reported
by fit. The keyword # FIXED has to appear in exactly this form.

gnuplot 5.5 113

Short introduction

fit is used to find a set of parameters that ’best’ fits your data to your user-defined function. The fit is
judged on the basis of the sum of the squared differences or 'residuals’ (SSR) between the input data points
and the function values, evaluated at the same places. This quantity is often called ’chisquare’ (i.e., the
Greek letter chi, to the power of 2). The algorithm attempts to minimize SSR, or more precisely, WSSR, as
the residuals are 'weighted’ by the input data errors (or 1.0) before being squared; see fit error_estimates
(p. 113) for details.

That’s why it is called ’least-squares fitting’. Let’s look at an example to see what is meant by 'non-linear’,
but first we had better go over some terms. Here it is convenient to use z as the dependent variable for
user-defined functions of either one independent variable, z=f(x), or two independent variables, z=f{(x,y). A
parameter is a user-defined variable that fit will adjust, i.e., an unknown quantity in the function declaration.
Linearity /non-linearity refers to the relationship of the dependent variable, z, to the parameters which fit
is adjusting, not of z to the independent variables, x and/or y. (To be technical, the second {and higher}
derivatives of the fitting function with respect to the parameters are zero for a linear least-squares problem).

For linear least-squares (LLS), the user-defined function will be a sum of simple functions, not involving
any parameters, each multiplied by one parameter. NLLS handles more complicated functions in which
parameters can be used in a large number of ways. An example that illustrates the difference between linear
and nonlinear least-squares is the Fourier series. One member may be written as

z=a*sin(c*x) + b*cos(c*x).

If a and b are the unknown parameters and c is constant, then estimating values of the parameters is a linear
least-squares problem. However, if ¢ is an unknown parameter, the problem is nonlinear.

In the linear case, parameter values can be determined by comparatively simple linear algebra, in one
direct step. However LLS is a special case which is also solved along with more general NLLS problems
by the iterative procedure that gnuplot uses. fit attempts to find the minimum by doing a search. Each
step (iteration) calculates WSSR with a new set of parameter values. The Marquardt-Levenberg algorithm
selects the parameter values for the next iteration. The process continues until a preset criterion is met,
either (1) the fit has "converged" (the relative change in WSSR is less than a certain limit, see set fit
limit (p. 172)), or (2) it reaches a preset iteration count limit (see set fit maxiter (p. 172)). The fit
may also be interrupted and subsequently halted from the keyboard (see fit (p. 110)). The user variable
FIT_CONVERGED contains 1 if the previous fit command terminated due to convergence; it contains 0 if
the previous fit terminated for any other reason. FIT_NITER contains the number of iterations that were
done during the last fit.

Often the function to be fitted will be based on a model (or theory) that attempts to describe or predict
the behaviour of the data. Then fit can be used to find values for the free parameters of the model, to
determine how well the data fits the model, and to estimate an error range for each parameter. See fit
error_estimates (p. 113).

Alternatively, in curve-fitting, functions are selected independent of a model (on the basis of experience as
to which are likely to describe the trend of the data with the desired resolution and a minimum number of
parameters*functions.) The fit solution then provides an analytic representation of the curve.

However, if all you really want is a smooth curve through your data points, the smooth option to plot may
be what you’'ve been looking for rather than fit.

Error estimates

In fit, the term "error" is used in two different contexts, data error estimates and parameter error estimates.

Data error estimates are used to calculate the relative weight of each data point when determining the
weighted sum of squared residuals, WSSR, or chisquare. They can affect the parameter estimates, since they
determine how much influence the deviation of each data point from the fitted function has on the final
values. Some of the fit output information, including the parameter error estimates, is more meaningful if
accurate data error estimates have been provided.

114 gnuplot 5.5

The statistical overview describes some of the fit output and gives some background for the ’practical
guidelines’.

Statistical overview

The theory of non-linear least-squares (NLLS) is generally described in terms of a normal distribution of
errors, that is, the input data is assumed to be a sample from a population having a given mean and a
Gaussian (normal) distribution about the mean with a given standard deviation. For a sample of sufficiently
large size, and knowing the population standard deviation, one can use the statistics of the chisquare dis-
tribution to describe a "goodness of fit" by looking at the variable often called "chisquare". Here, it is
sufficient to say that a reduced chisquare (chisquare/degrees of freedom, where degrees of freedom is the
number of datapoints less the number of parameters being fitted) of 1.0 is an indication that the weighted
sum of squared deviations between the fitted function and the data points is the same as that expected for
a random sample from a population characterized by the function with the current value of the parameters
and the given standard deviations.

If the standard deviation for the population is not constant, as in counting statistics where variance = counts,
then each point should be individually weighted when comparing the observed sum of deviations and the
expected sum of deviations.

At the conclusion fit reports ’stdfit’, the standard deviation of the fit, which is the rms of the residuals, and
the variance of the residuals, also called 'reduced chisquare’ when the data points are weighted. The number
of degrees of freedom (the number of data points minus the number of fitted parameters) is used in these
estimates because the parameters used in calculating the residuals of the datapoints were obtained from the
same data. If the data points have weights, gnuplot calculates the so-called p-value, i.e. one minus the
cumulative distribution function of the chisquare-distribution for the number of degrees of freedom and the
resulting chisquare, see fit practical_guidelines (p. 114). These values are exported to the variables

FIT_NDF = Number of degrees of freedom
FIT_WSSR = Weighted sum-of-squares residual
FIT_STDFIT = sqrt(WSSR/NDF)

FIT_P = p-value

To estimate confidence levels for the parameters, one can use the minimum chisquare obtained from the fit
and chisquare statistics to determine the value of chisquare corresponding to the desired confidence level,
but considerably more calculation is required to determine the combinations of parameters which produce
such values.

Rather than determine confidence intervals, fit reports parameter error estimates which are readily obtained
from the variance-covariance matrix after the final iteration. By convention, these estimates are called
"standard errors" or "asymptotic standard errors", since they are calculated in the same way as the standard
errors (standard deviation of each parameter) of a linear least-squares problem, even though the statistical
conditions for designating the quantity calculated to be a standard deviation are not generally valid for the
NLLS problem. The asymptotic standard errors are generally over-optimistic and should not be used for
determining confidence levels, but are useful for qualitative purposes.

The final solution also produces a correlation matrix indicating correlation of parameters in the region of the
solution; The main diagonal elements, autocorrelation, are always 1; if all parameters were independent, the
off-diagonal elements would be nearly 0. Two variables which completely compensate each other would have
an off-diagonal element of unit magnitude, with a sign depending on whether the relation is proportional or
inversely proportional. The smaller the magnitudes of the off-diagonal elements, the closer the estimates of
the standard deviation of each parameter would be to the asymptotic standard error.

Practical guidelines

If you have a basis for assigning weights to each data point, doing so lets you make use of additional knowledge
about your measurements, e.g., take into account that some points may be more reliable than others. That

gnuplot 5.5 115

may affect the final values of the parameters.

Weighting the data provides a basis for interpreting the additional fit output after the last iteration. Even
if you weight each point equally, estimating an average standard deviation rather than using a weight of 1
makes WSSR a dimensionless variable, as chisquare is by definition.

Each fit iteration will display information which can be used to evaluate the progress of the fit. (An ™’
indicates that it did not find a smaller WSSR and is trying again.) The ’sum of squares of residuals’, also
called ’chisquare’, is the WSSR, between the data and your fitted function; fit has minimized that. At this
stage, with weighted data, chisquare is expected to approach the number of degrees of freedom (data points
minus parameters). The WSSR can be used to calculate the reduced chisquare (WSSR/ndf) or stdfit, the
standard deviation of the fit, sqrt(WSSR/ndf). Both of these are reported for the final WSSR.

If the data are unweighted, stdfit is the rms value of the deviation of the data from the fitted function, in
user units.

If you supplied valid data errors, the number of data points is large enough, and the model is correct, the
reduced chisquare should be about unity. (For details, look up the ’chi-squared distribution’ in your favorite
statistics reference.) If so, there are additional tests, beyond the scope of this overview, for determining how
well the model fits the data.

A reduced chisquare much larger than 1.0 may be due to incorrect data error estimates, data errors not
normally distributed, systematic measurement errors, ’outliers’, or an incorrect model function. A plot of
the residuals, e.g., plot ’datafile’ using 1:($2-f($1)), may help to show any systematic trends. Plotting
both the data points and the function may help to suggest another model.

Similarly, a reduced chisquare less than 1.0 indicates WSSR is less than that expected for a random sample
from the function with normally distributed errors. The data error estimates may be too large, the statistical
assumptions may not be justified, or the model function may be too general, fitting fluctuations in a particular
sample in addition to the underlying trends. In the latter case, a simpler function may be more appropriate.

The p-value of the fit is one minus the cumulative distribution function of the chisquare-distribution for the
number of degrees of freedom and the resulting chisquare. This can serve as a measure of the goodness-of-fit.
The range of the p-value is between zero and one. A very small or large p-value indicates that the model does
not describe the data and its errors well. As described above, this might indicate a problem with the data,
its errors or the model, or a combination thereof. A small p-value might indicate that the errors have been
underestimated and the errors of the final parameters should thus be scaled. See also set fit errorscaling
(p. 172).

You’ll have to get used to both fit and the kind of problems you apply it to before you can relate the
standard errors to some more practical estimates of parameter uncertainties or evaluate the significance of
the correlation matrix.

Note that fit, in common with most NLLS implementations, minimizes the weighted sum of squared distances
(y-f(x))**2. Tt does not provide any means to account for "errors" in the values of x, only in y. Also, any
"outliers" (data points outside the normal distribution of the model) will have an exaggerated effect on the
solution.

Control
There are two environment variables that can be defined to affect fit. The environment variables must be
defined before gnuplot is executed; how to do so depends on your operating system.

FIT_LOG

changes the name (and/or path) of the file to which the fit log will be written. The default is to write
"fit.log" in the current working directory. This can be overwritten at run time using the command set fit
logfile.

FIT_SCRIPT

116 gnuplot 5.5

specifies a command that may be executed after an user interrupt. The default is replot, but a plot or
load command may be useful to display a plot customized to highlight the progress of the fit. This can be
changed at run time using set fit script.

For many other run time adjustments to way fit works, see set fit (p. 172).

Error recovery

Starting with gnuplot version 5.5, the fit command always returns to the next command input line regardless
of the success or failure of fitting. This allows scripted recovery from fit errors. The variable FIT_ERROR
is set to 0 on success, non-zero on error. Example:

do for [i=1:5] {
DATA = sprintf("Data_}%05d.dat", i)
fit f(x) DATA via a,b,c
if (FIT_ERROR || !FIT_CONVERGED) {
continue
}
set output sprintf("dataset_%05.png", i)
plot DATA, f(x)
unset output

Multi-branch

In multi-branch fitting, multiple data sets can be simultaneously fit with functions of one independent
variable having common parameters by minimizing the total WSSR. The function and parameters (branch)
for each data set are selected by using a 'pseudo-variable’; e.g., either the dataline number (a ’column’ index
of -1) or the datafile index (-2), as the second independent variable.

Example: Given two exponential decays of the form, z=f(x), each describing a different data set but having
a common decay time, estimate the values of the parameters. If the datafile has the format x:z:s, then
f(x,y) = (y==0) 7 axexp(-x/tau) : bxexp(-x/tau)
fit f(x,y) ’datafile’ using 1:-2:2:3 wvia a, b, tau

For a more complicated example, see the file "hexa.fnc" used by the "fit.dem" demo.

Appropriate weighting may be required since unit weights may cause one branch to predominate if there is
a difference in the scale of the dependent variable. Fitting each branch separately, using the multi-branch
solution as initial values, may give an indication as to the relative effect of each branch on the joint solution.

Starting values

Nonlinear fitting is not guaranteed to converge to the global optimum (the solution with the smallest sum of
squared residuals, SSR), and can get stuck at a local minimum. The routine has no way to determine that;
it is up to you to judge whether this has happened.

fit may, and often will get "lost" if started far from a solution, where SSR is large and changing slowly as
the parameters are varied, or it may reach a numerically unstable region (e.g., too large a number causing
a floating point overflow) which results in an "undefined value" message or gnuplot halting.

To improve the chances of finding the global optimum, you should set the starting values at least roughly in
the vicinity of the solution, e.g., within an order of magnitude, if possible. The closer your starting values
are to the solution, the less chance of stopping at a false minimum. One way to find starting values is to plot
data and the fitting function on the same graph and change parameter values and replot until reasonable
similarity is reached. The same plot is also useful to check whether the fit found a false minimum.

gnuplot 5.5 117

Of course finding a nice-looking fit does not prove there is no "better" fit (in either a statistical sense,
characterized by an improved goodness-of-fit criterion, or a physical sense, with a solution more consistent
with the model.) Depending on the problem, it may be desirable to fit with various sets of starting values,
covering a reasonable range for each parameter.

Tips

Here are some tips to keep in mind to get the most out of fit. They’re not very organized, so you’ll have to
read them several times until their essence has sunk in.

The two forms of the via argument to fit serve two largely distinct purposes. The via "file" form is best
used for (possibly unattended) batch operation, where you supply the starting parameter values in a file.

The via varl, var2, ... form is best used interactively, where the command history mechanism may be
used to edit the list of parameters to be fitted or to supply new startup values for the next try. This is
particularly useful for hard problems, where a direct fit to all parameters at once won’t work without good
starting values. To find such, you can iterate several times, fitting only some of the parameters, until the
values are close enough to the goal that the final fit to all parameters at once will work.

Make sure that there is no mutual dependency among parameters of the function you are fitting. For
example, don’t try to fit a*exp(x+b), because a*exp(x+b)=a*exp(b)*exp(x). Instead, fit either a*exp(x) or
exp(x+b).

A technical issue: The larger the ratio of the largest and the smallest absolute parameter values, the slower
the fit will converge. If the ratio is close to or above the inverse of the machine floating point precision, it
may take next to forever to converge, or refuse to converge at all. You will either have to adapt your function
to avoid this, e.g., replace 'parameter’ by '1e9*parameter’ in the function definition, and divide the starting
value by 1e9 or use set fit prescale which does this internally according to the parameter starting values.

If you can write your function as a linear combination of simple functions weighted by the parameters to be
fitted, by all means do so. That helps a lot, because the problem is no longer nonlinear and should converge
with only a small number of iterations, perhaps just one.

Some prescriptions for analysing data, given in practical experimentation courses, may have you first fit some
functions to your data, perhaps in a multi-step process of accounting for several aspects of the underlying
theory one by one, and then extract the information you really wanted from the fitting parameters of those
functions. With fit, this may often be done in one step by writing the model function directly in terms of
the desired parameters. Transforming data can also quite often be avoided, though sometimes at the cost of
a more difficult fit problem. If you think this contradicts the previous paragraph about simplifying the fit
function, you are correct.

A "singular matrix" message indicates that this implementation of the Marquardt-Levenberg algorithm
can’t calculate parameter values for the next iteration. Try different starting values, writing the function in
another form, or a simpler function.

Finally, a nice quote from the manual of another fitting package (fudgit), that kind of summarizes all these
issues: "Nonlinear fitting is an art!"

118 gnuplot 5.5

Function blocks

The function command signals the definition of a here-document containing a named block of gnuplot code
that can be called as a function. As with data blocks, the name of a function block must begin with a ’$’.
Up to nine named parameters may be specified as part of the definition. These names may be used inside
the function block as local variables. See local (p. 122) and scope (p. 69).

Once the function block is defined, you can invoke it by name anywhere that a normal function could be
used.

Example:

function $sinc(arg) << EOF
if (arg == 0) { return 1.0 }
return sin(arg) / arg

EOF

gnuplot> plot $sinc(x) with lines title "sinc(x) as a function block"

It is not necessary to specify a list of named arguments to a function block at the time it is declared.
Arguments to the function passed from the command line can be also be accessed from inside the function
block as ARGV([1] etc, as they would be for a call command. See ARGV (p. 107). This allows defining a
function block that can operate on a variable number of arguments.

Example:

function $max << EOF
local max = real("-Inf")
if (ARGC == 0) { return NaN }
do for [i=1:ARGC] {
if (max < ARGV[il) {
max = ARGV[i]
}
}
return max
EOF
gnuplot> foo = $max(£(A), 2.0, C, Array[3])
gnuplot> baz = $max(foo, 100.)

The primary motivation for function block support is to allow definition of complicated functions directly
in gnuplot. Execution is of course slower than if the same function were coded directly in C or Fortran, but
this is acceptable for many purposes. If execution speed matters then the function can be implemented later
as a plugin instead (see plugins (p. 68)).

A non-trivial example of using function blocks to implement and plot a 15-term Lancosz approximation for
the complex Ingamma function is provided in the demo collection as function_block.dem

The function block implementation is slower by a factor of roughly 25 compared to the built-in InGamma
function using the same algorithm coded directly in C. Nevertheless it is still fast enough for 3D interactive
rotation. The function definitions used in that demo are show below.

array coef[15] = [...]

function $Lancosz(z) << EOD
local Sum = coef[1] + sum [k=2:15] coef[k] / (z + k - 1)
local temp = z + 671./128.
temp = (z + 0.5) * log(temp) - temp
temp = temp + log(sqrt(2*pi) * Sum/z)
return temp

http://www.gnuplot.info/demo_5.5/function_block.html

gnuplot 5.5 119

EOD

function $Reflect(z) << EOD
local w = $Lancosz(1.0 - z)
local temp = log(sin(pi * z))
return log(pi) - (w + temp)
EOD

my_lngamma(z) = (z == 0) ? NaN : (real(z) < 0.5) 7 $Reflect(z) : $Lancosz(z)

Use of function blocks is EXPERIMENTAL. Details may change before inclusion in a release version.

120 gnuplot 5.5

Help

The help command displays built-in help. To specify information on a particular topic use the syntax:

help {<topic>}

If <topic> is not specified, a short message is printed about gnuplot. After help for the requested topic is
given, a menu of subtopics is given; help for a subtopic may be requested by typing its name, extending the
help request. After that subtopic has been printed, the request may be extended again or you may go back
one level to the previous topic. Eventually, the gnuplot command line will return.

If a question mark (?) is given as the topic, the list of topics currently available is printed on the screen.

History

The history command prints or saves previous commands in the history list, or reexecutes a previous entry
in the list. To modify the behavior of this command or the location of the saved history file, see set history
(p. 180).

Input lines with history as their first command are not stored in the command history.

Examples:
history # show the complete history
history 5 # show last 5 entries in the history
history quiet 5 # show last 5 entries without entry numbers
history "hist.gp" # write the complete history to file hist.gp

history "hist.gp" append # append the complete history to file hist.gp
history 10 "hist.gp" # write last 10 commands to file hist.gp
history 10 "|head -5 >>diary.gp" # write 5 history commands using pipe

history 7load # show all history entries starting with "load"
history ?"set c" # like above, several words enclosed in quotes
hist !"set xr" # like above, several words enclosed in quotes
hist 155 # reexecute the command at history entry 55
If
Syntax:
if (<condition>) { <commands>;
<commands>
<commands>
} else if (<condition>) {
<commands>
} else {
<commands>

}

This version of gnuplot supports block-structured if/else statements. If the keyword if or else is immediately
followed by an opening "{", then conditional execution applies to all statements, possibly on multiple input
lines, until a matching "}" terminates the block. If commands may be nested.

The old pre-version 5 single-line if/else syntax is still supported, but can not be mixed with the new block-
structured syntax. See if-old (p. 121).

gnuplot 5.5 121

If-old

Old syntax:
if (<condition>) <command-line> [; else if (<condition>) ...; else ...]
Through gnuplot version 4.4, the scope of the if/else commands was limited to a single input line. Now a

multi-line clause may be enclosed in curly brackets. The old syntax is still honored but cannot be used inside
a bracketed clause.

If no opening "{" follows the if keyword, the command(s) in <command-line> will be executed if
<condition> is true (non-zero) or skipped if <condition> is false (zero). Either case will consume com-
mands on the input line until the end of the line or an occurrence of else. Note that use of ; to allow
multiple commands on the same line will not end the conditionalized commands.

Examples:

pi=3

if (pi!=acos(-1)) print "?Fixing pi!"; pi=acos(-1); print pi
will display:

?Fixing pi!

3.14159265358979

but

if (1==2) print "Never see this"; print "Or this either"

will not display anything.

For

The plot, splot, set and unset commands may optionally contain an iteration clause. This has the effect
of executing the basic command multiple times, each time re-evaluating any expressions that make use of
the iteration control variable. Iteration of arbitrary command sequences can be requested using the do
command. Two forms of iteration clause are currently supported:

for [intvar = start:end{:increment}]
for [stringvar in "A B C D"]

Examples:

plot for [filename in "A.dat B.dat C.dat"] filename using 1:2 with lines
plot for [basename in "A B C"] basename.".dat" using 1:2 with lines

set for [i = 1:10] style line i lc rgb "blue"

unset for [tag = 100:200] label tag

Nested iteration is supported:

set for [i=1:9] for [j=1:9] label ix10+j sprintf("%d",i*10+j) at i,]

See additional documentation for iteration (p. 60), do (p. 109).

Import

The import command associates a user-defined function name with a function exported by an external
shared object. This constitutes a plugin mechanism that extends the set of functions available in gnuplot.

Syntax:

122 gnuplot 5.5

import func(x[,y,z,...]) from "sharedobj[:symbol]"

Examples:

make the function myfun, exported by "mylib.so" or "mylib.dll"
available for plotting or numerical calculation in gnuplot
import myfun(x) from "mylib"

import myfun(x) from "mylib:myfun" # same as above

make the function theirfun, defined in "theirlib.so" or "theirlib.dll"
available under a different name
import myfun(x,y,z) from "theirlib:theirfun"

The program extends the name given for the shared object by either ".so" or ".dll" depending on the
operating system, and searches for it first as a full path name and then as a path relative to the cur-
rent directory. The operating system itself may also search any directories in LD_LIBRARY_PATH or
DYLD_LIBRARY_PATH. See plugins (p. 68).

Load

The load command executes each line of the specified input file as if it had been typed in interactively.
Files created by the save command can later be loaded. Any text file containing valid commands can be
created and then executed by the load command. Files being loaded may themselves contain load or call
commands. To load with arguments, see call (p. 106). EXPERIMENTAL: Commands can be read from
a datablock rather than a file.

Syntax:

load "<input-file>"
load $datablock

The name of the input file must be enclosed in quotes.

The special filename "-" may be used to load commands from standard input. This allows a gnuplot
command file to accept some commands from standard input. Please see help for batch/interactive
(p. 35) for more details.

On some systems which support a popen function (Unix), the load file can be read from a pipe by starting
the file name with a ’<’.

Examples:

load ’work.gnu’
load "func.dat"
load "< loadfile_generator.sh"

The load command is performed implicitly on any file names given as arguments to gnuplot. These are
loaded in the order specified, and then gnuplot exits.

Local

Syntax:

local foo = <expression>
local array foolsizel

The local keyword introduces declaration of a variable whose scope is limited to the execution of the code
block in which it is declared. Declaration is optional, but without it all variables are global. If the name of

gnuplot 5.5 123

a local variable duplicates the name of a global variable, the global variable is shadowed until exit from the
local scope. See scope (p. 69).

Local declarations may be used to prevent a global variable from being unintentionally overwritten by a call
or load statement. They are particularly useful inside a function block. The local command is also also
valid inside the code block in curly brackets following an if, else, do for, or while statement.

Example: Suppose you want to write a script "plot_all_data.gp" containing commands that plot a bunch of
data sets. You want to call this convenience script from the command line or from other scripts without
worrying that it trashes any variables with names "file" or "files" or "dataset" or "outfile". The variable
"file" is inherently local because it is an iteration variable (see scope (p. 69)) but the other three names
need keyword local to protect them.

plot_all_data.gp:

local files = system("ls -1 *.dat")

do for [file in files] {
local dataset = file[l:strstrt(file,".dat")-1]
local outfile = dataset . ".png"
set output outfile
plot file with lines title dataset

}

unset output

Lower

See raise (p. 150).

Pause

The pause command displays any text associated with the command and then waits a specified amount of
time or until the carriage return is pressed. pause is especially useful in conjunction with load files.

Syntax:
pause <time> {"<string>"}
pause mouse {<endcondition>}{, <endcondition>} {"<string>"}
pause mouse close

<time> may be any constant or floating-point expression. pause -1 will wait until a carriage return is hit,
zero (0) won’t pause at all, and a positive number will wait the specified number of seconds.

If the current terminal supports mousing, then pause mouse will terminate on either a mouse click or on
ctrl-C. For all other terminals, or if mousing is not active, pause mouse is equivalent to pause -1.

If one or more end conditions are given after pause mouse, then any one of the conditions will terminate
the pause. The possible end conditions are keypress, buttonl, button2, button3, close, and any. If
the pause terminates on a keypress, then the ascii value of the key pressed is returned in MOUSE_KEY.
The character itself is returned as a one character string in MOUSE_CHAR. Hotkeys (bind command) are
disabled if keypress is one of the end conditions. Zooming is disabled if button3 is one of the end conditions.

In all cases the coordinates of the mouse are returned in variables MOUSE_X, MOUSE_Y, MOUSE_X2,
MOUSE_Y2. See mouse variables (p. 67).

Note: Since pause communicates with the operating system rather than the graphics, it may behave differ-
ently with different device drivers (depending upon how text and graphics are mixed).

Examples:
pause -1 # Wait until a carriage return is hit

124 gnuplot 5.5

pause 3 # Wait three seconds

pause -1 "Hit return to continue"

pause 10 "Isn’t this pretty? It’s a cubic spline."

pause mouse "Click any mouse button on selected data point"

pause mouse keypress "Type a letter from A-F in the active window"
pause mouse buttonl,keypress

pause mouse any "Any key or button will terminate"

The variant "pause mouse key" will resume after any keypress in the active plot window. If you want to
wait for a particular key to be pressed, you can use a loop such as:

print "I will resume after you hit the Tab key in the plot window"
plot <something>
pause mouse key
while (MOUSE_KEY != 9) {
pause mouse key

}

Pause mouse close

The command pause mouse close is a specific example of pausing to wait for an external event. In this case
the program waits for a "close" event from the plot window. Exactly how to generate such an event varies
with your desktop environment and configuration, but usually you can close the plot window by clicking
on some widget on the window border or by typing a hot-key sequence such as <alt><F4> or <ctrl>q. If
you are unsure whether a suitable widget or hot-key is available to the user, you may also want to define a
hot-key sequence using gnuplot’s own mechanism. See bind (p. 66).

The command sequence below may be useful when running gnuplot from a script rather than from the
command line.

plot <...whatever...>
bind all "alt-End" "exit gnuplot"
pause mouse close

Plot

plot and splot are the primary commands for drawing plots with gnuplot. They offer many different
graphical representations for functions and data. plot is used to draw 2D functions and data. splot draws
2D projections of 3D surfaces and data.

Syntax:
plot {<ranges>} <plot-element> {, <plot-element>, <plot-element>}

Each plot element consists of a definition, a function, or a data source together with optional properties or
modifiers:

plot-element:
{<iteration>}
<definition> | {sampling-range} <function> | <data source>
| keyentry
{axes <axes>} {<title-spec>}
{with <style>}

The graphical representation of each plot element is determined by the keyword with, e.g. with lines or
with boxplot. See plotting styles (p. 77).

gnuplot 5.5 125

The data to be plotted is either generated by a function (two functions if in parametric mode), read from a
data file, read from a named data block that was defined previously, or extracted from an array. Multiple
datafiles, data blocks, arrays, and/or functions may be plotted in a single plot command separated by
commas. See data (p. 129), inline data (p. 60), functions (p. 143).

A plot-element that contains the definition of a function or variable does not create any visible output, see
third example below.

Examples:

plot sin(x)
plot sin(x), cos(x)
plot f(x) = sin(x*a), a = .2, f(x), a = .4, f(x)
plot "datafile.1" with lines, "datafile.2" with points
plot [t=1:10] [-pi:pi*2] tan(t), \
"data.1" using (tan($2)):($3/$4) smooth csplines \
axes x1y2 notitle with lines 5
plot for [datafile in "spinach.dat broccoli.dat"] datafile

See also show plot (p. 255).

Axes

There are four possible sets of axes available; the keyword <axes> is used to select the axes for which a
particular line should be scaled. x1y1 refers to the axes on the bottom and left; x2y2 to those on the top
and right; x1y2 to those on the bottom and right; and x2y1 to those on the top and left. Ranges specified
on the plot command apply only to the first set of axes (bottom left).

Binary

BINARY DATA FILES:

It is necessary to provide the keyword binary after the filename. Adequate details of the file format must
be given on the command line or extracted from the file itself for a supported binary filetype. In particular,
there are two structures for binary files, binary matrix format and binary general format.

The binary matrix format contains a two dimensional array of 32 bit IEEE float values plus an additional
column and row of coordinate values. In the using specifier of a plot command, column 1 refers to the
matrix row coordinate, column 2 refers to the matrix column coordinate, and column 3 refers to the value
stored in the array at those coordinates.

The binary general format contains an arbitrary number of columns for which information must be specified
at the command line. For example, array, record, format and using can indicate the size, format and
dimension of data. There are a variety of useful commands for skipping file headers and changing endianess.
There are a set of commands for positioning and translating data since often coordinates are not part of the
file when uniform sampling is inherent in the data. Unlike reading from a text or matrix binary file, general
binary does not treat the generated columns as 1, 2 or 3 in the using list. Instead column 1 refers to column
1 of the file, or as specified in the format list.

There are global default settings for the various binary options which may be set using the same syntax as the
options when used as part of the (s)plot <filename> binary ... command. This syntax is set datafile
binary The general rule is that common command-line specified parameters override file-extracted
parameters which override default parameters.

Binary matrix is the default binary format when no keywords specific to binary general are given, i.e.,
array, record, format, filetype.

bl

General binary data can be entered at the command line via the special file name ’-’. However, this is
intended for use through a pipe where programs can exchange binary data, not for keyboards. There is

126 gnuplot 5.5

no "end of record" character for binary data. Gnuplot continues reading from a pipe until it has read the
number of points declared in the array qualifier. See binary matrix (p. 257) or binary general (p. 126)
for more details.

The index keyword is not supported, since the file format allows only one surface per file. The every and
using specifiers are supported. using operates as if the data were read in the above triplet form. Binary
File Splot Demo.

General

The binary keyword appearing alone indicates a binary data file that contains both coordinate information
describing a non-uniform grid and the value of each grid point (see binary matrix (p. 257)). Binary data
in any other format requires additional keywords to describe the layout of the data. Unfortunately the syntax
of these required additional keywords is convoluted. Nevertheless the general binary mode is particularly
useful for application programs sending large amounts of data to gnuplot.

Syntax:
plot ’<file_name>’ {binary <binary list>} ...
splot ’<file_name>’ {binary <binary list>} ...

General binary format is activated by keywords in <binary list> pertaining to information about file struc-
ture, i.e., array, record, format or filetype. Otherwise, non-uniform matrix binary format is assumed.
(See binary matrix (p. 257) for more details.)

Gnuplot knows how to read a few standard binary file types that are fully self-describing, e.g. PNG images.
Type show datafile binary at the command line for a list. Apart from these, you can think of binary data
files as conceptually the same as text data. Each point has columns of information which are selected via the
using specification. If no format string is specified, gnuplot will read in a number of binary values equal
to the largest column given in the <using list>. For example, using 1:3 will result in three columns being
read, of which the second will be ignored. Certain plot types have an associated default using specification.
For example, with image has a default of using 1, while with rgbimage has a default of using 1:2:3.

Array

Describes the sampling array dimensions associated with the binary file. The coordinates will be generated
by gnuplot. A number must be specified for each dimension of the array. For example, array=(10,20)
means the underlying sampling structure is two-dimensional with 10 points along the first (x) dimension and
20 points along the second (y) dimension. A negative number indicates that data should be read until the
end of file. If there is only one dimension, the parentheses may be omitted. A colon can be used to separate
the dimensions for multiple records. For example, array=25:35 indicates there are two one-dimensional
records in the file.

Record

This keyword serves the same function as array and has the same syntax. However, record causes gnuplot
to not generate coordinate information. This is for the case where such information may be included in one
of the columns of the binary data file.

Skip

This keyword allows you to skip sections of a binary file. For instance, if the file contains a 1024 byte header
before the start of the data region you would probably want to use
plot ’<file_name>’ binary skip=1024 ...

If there are multiple records in the file, you may specify a leading offset for each. For example, to skip 512
bytes before the 1st record and 256 bytes before the second and third records

http://www.gnuplot.info/demo/binary.html
http://www.gnuplot.info/demo/binary.html

gnuplot 5.5 127

plot ’<file_name> binary record=356:356:356 skip=512:256:256 ...

Format

The default binary format is a float. For more flexibility, the format can include details about variable sizes.
For example, format="%uchar%int%float" associates an unsigned character with the first using column,
an int with the second column and a float with the third column. If the number of size specifications is less
than the greatest column number, the size is implicitly taken to be similar to the last given variable size.

Furthermore, similar to the using specification, the format can include discarded columns via the * character
and have implicit repetition via a numerical repeat-field. For example, format="%*2int%3float" causes
gnuplot to discard two ints before reading three floats. To list variable sizes, type show datafile binary
datasizes. There are a group of names that are machine dependent along with their sizes in bytes for the
particular compilation. There is also a group of names which attempt to be machine independent.

Endian

Often the endianess of binary data in the file does not agree with the endianess used by the platform on which
gnuplot is running. Several words can direct gnuplot how to arrange bytes. For example endian=little
means treat the binary file as having byte significance from least to greatest. The options are

little: 1least significant to greatest significance
big: greatest significance to least significance
default: assume file endianess is the same as compiler
swap (swab): Interchange the significance. (If things
don’t look right, try this.)

Gnuplot can support "middle" ("pdp") endian if it is compiled with that option.

Filetype

For some standard binary file formats gnuplot can extract all the necessary information from the file in
question. As an example, "format=edf" will read ESRF Header File format files. For a list of the currently
supported file formats, type show datafile binary filetypes.

There is a special file type called auto for which gnuplot will check if the binary file’s extension is a quasi-
standard extension for a supported format.

Command line keywords may be used to override settings extracted from the file. The settings from the file
override any defaults. See set datafile binary (p. 169).

Avs avs is one of the automatically recognized binary file types for images. AVS is an extremely simple
format, suitable mostly for streaming between applications. It consists of 2 longs (xwidth, ywidth) followed
by a stream of pixels, each with four bytes of information alpha/red/green/blue.

Edf edf is one of the automatically recognized binary file types for images. EDF stands for ESRF Data
Format, and it supports both edf and ehf formats (the latter means ESRF Header Format). More information
on specifications can be found at

http://www.edfplus.info/specs

128 gnuplot 5.5

Png If gnuplot was configured to use the libgd library for png/gif/jpeg output, then it can also be used to
read these same image types as binary files. You can use an explicit command

plot ’file.png’ binary filetype=png

Or the file type will be recognized automatically from the extension if you have previously requested
set datafile binary filetype=auto

Keywords

The following keywords apply only when generating coordinates from binary data files. That is, the control
mapping the individual elements of a binary array, matrix, or image to specific x/y/z positions.

Scan A great deal of confusion can arise concerning the relationship between how gnuplot scans a binary file
and the dimensions seen on the plot. To lessen the confusion, conceptually think of gnuplot always scanning
the binary file point/line/plane or fast/medium/slow. Then this keyword is used to tell gnuplot how to map
this scanning convention to the Cartesian convention shown in plots, i.e., x/y/z. The qualifier for scan is a
two or three letter code representing where point is assigned (first letter), line is assigned (second letter), and
plane is assigned (third letter). For example, scan=yx means the fastest, point-by-point, increment should
be mapped along the Cartesian y dimension and the middle, line-by-line, increment should be mapped along
the x dimension.

When the plotting mode is plot, the qualifier code can include the two letters x and y. For splot, it can
include the three letters x, y and z.

There is nothing restricting the inherent mapping from point/line/plane to apply only to Cartesian coordi-
nates. For this reason there are cylindrical coordinate synonyms for the qualifier codes where t (theta), r
and z are analogous to the x, y and z of Cartesian coordinates.

Transpose Shorthand notation for scan=yx or scan=yxz. L.e. it affects the assignment of pixels to scan
lines during input. To instead transpose an image when it is displayed try

plot ’imagefile’ binary filetype=auto flipx rotate=90deg with rgbimage

Dx, dy, dz When gnuplot generates coordinates, it uses the spacing described by these keywords. For
example dx=10 dy=20 would mean space samples along the x dimension by 10 and space samples along
the y dimension by 20. dy cannot appear if dx does not appear. Similarly, dz cannot appear if dy does
not appear. If the underlying dimensions are greater than the keywords specified, the spacing of the highest
dimension given is extended to the other dimensions. For example, if an image is being read from a file and
only dx=3.5 is given gnuplot uses a delta x and delta y of 3.5.

The following keywords also apply only when generating coordinates. However they may also be used with
matrix binary files.

Flipx, flipy, flipz Sometimes the scanning directions in a binary datafile are not consistent with that
assumed by gnuplot. These keywords can flip the scanning direction along dimensions x, y, z.

Origin When gnuplot generates coordinates based upon transposition and flip, it attempts to always
position the lower left point in the array at the origin, i.e., the data lies in the first quadrant of a Cartesian
system after transpose and flip.

To position the array somewhere else on the graph, the origin keyword directs gnuplot to position the lower
left point of the array at a point specified by a tuple. The tuple should be a double for plot and a triple for
splot. For example, origin=(100,100):(100,200) is for two records in the file and intended for plotting
in two dimensions. A second example, origin=(0,0,3.5), is for plotting in three dimensions.

gnuplot 5.5 129

Center Similar to origin, this keyword will position the array such that its center lies at the point given
by the tuple. For example, center=(0,0). Center does not apply when the size of the array is Inf.

Rotate The transpose and flip commands provide some flexibility in generating and orienting coordinates.
However, for full degrees of freedom, it is possible to apply a rotational vector described by a rotational
angle in two dimensions.

The rotate keyword applies to the two-dimensional plane, whether it be plot or splot. The rotation is done
with respect to the positive angle of the Cartesian plane.

The angle can be expressed in radians, radians as a multiple of pi, or degrees. For example, rotate=1.5708,
rotate=0.5pi and rotate=90deg are equivalent.

If origin is specified, the rotation is done about the lower left sample point before translation. Otherwise,
the rotation is done about the array center.

Perpendicular For splot, the concept of a rotational vector is implemented by a triple representing the
vector to be oriented normal to the two-dimensional x-y plane. Naturally, the default is (0,0,1). Thus
specifying both rotate and perpendicular together can orient data myriad ways in three-space.

The two-dimensional rotation is done first, followed by the three-dimensional rotation. That is, if R’ is the
rotational 2 x 2 matrix described by an angle, and P is the 3 x 3 matrix projecting (0,0,1) to (xp,yp,zp),
let R be constructed from R’ at the upper left sub-matrix, 1 at element 3,3 and zeros elsewhere. Then the
matrix formula for translating data is v’ = P R v, where v is the 3 x 1 vector of data extracted from the
data file. In cases where the data of the file is inherently not three-dimensional, logical rules are used to
place the data in three-space. (E.g., usually setting the z-dimension value to zero and placing 2D data in
the x-y plane.)

Data

Data provided in a file can be plotted by giving the name of the file (enclosed in single or double quotes) on
the plot command line. Data may also come from an input stream that is not a file. See special-filenames
(p. 138), piped-data (p. 139), datablocks (p. 60).

Syntax:
plot ’<file_name>’ {binary <binary list>}

{{nonuniform|sparse} matrix}
{index <index list> | index "<name>"}
{every <every list>}
{skip <number-of-lines>}
{using <using list>}
{smooth <option>}
{bins <options>}
{mask}
{convexhull}
{volatile} {zsort} {mnoautoscale}

The modifiers binary, index, every, skip, using, smooth, bins, mask, convexhull, and zsort are
discussed separately. In brief

e skip N tells the program to ignore N lines at the start of the input file
e binary indicates that the file contains binary data rather than text

e index selects which data sets in a multi-data-set file are to be plotted
e every specifies which points within a single data set are to be plotted

e using specifies which columns in the file are to be used in which order

130 gnuplot 5.5

e smooth performs simple filtering, interpolation, or curve-fitting of the data prior to plotting

e convexhull either alone or in combination with smooth replaces the points in the input data set with
a new set of points that constitute the vertices of a bounding polygon.

e bins sorts individual input points into equal-sized intervals along x and plots a single accumulated
value per interval

e mask filters the data through a previously defined mask to plot only a selected subset of pixels in an
image or a selected region of a pm3d surface.

e volatile indicates that the content of the file may not be available to reread later and therefore it
should be retained internally for re-use.

splot has a similar syntax but does not support bins and smoothing support is limited to smooth csplines
and smooth acsplines.

The noautoscale keyword means that the points making up this plot will be ignored when automatically
determining axis range limits.

TEXT DATA FILES:

Each non-empty line in a data file describes one data point, except that records beginning with # (and also
with ! on VMS) will be treated as comments and ignored.

Depending on the plot style and options selected, from one to eight values are read from each line and
associated with a single data point. See using (p. 139).

The individual records on a single line of data must be separated by white space (one or more blanks or
tabs) or a special field separator character which is specified by the set datafile command. A single field
may itself contain white space characters if the entire field is enclosed in a pair of double quotes, or if a field
separator other than white space is in effect. Whitespace inside a pair of double quotes is ignored when
counting columns, so the following datafile line has three columns:

1.0 "second column" 3.0

Data may be written in exponential format with the exponent preceded by the letter e or E. The fortran
exponential specifiers d, D, q, and Q may also be used if the command set datafile fortran is in effect.

Blank records in a data file are significant. Single blank records designate discontinuities in a plot; no line
will join points separated by a blank records (if they are plotted with a line style). Two blank records in a
row indicate a break between separate data sets. See index (p. 134).

If autoscaling has been enabled (set autoscale), the axes are automatically extended to include all data-
points, with a whole number of tic marks if tics are being drawn. This has two consequences: i) For splot,
the corner of the surface may not coincide with the corner of the base. In this case, no vertical line is drawn.
ii) When plotting data with the same x range on a dual-axis graph, the x coordinates may not coincide if
the x2tics are not being drawn. This is because the x axis has been autoextended to a whole number of tics,
but the x2 axis has not. The following example illustrates the problem:

reset; plot ’-’, ’-’ axes x2yl
11

19 19

e

11

19 19

e

To avoid this, you can use the noextend modifier of the set autoscale or set [axis]range commands.
This turns off extension of the axis range to include the next tic mark.

Label coordinates and text can also be read from a data file (see labels (p. 93)).

gnuplot 5.5 131

Columnheaders

Extra lines at the start of a data file may be explicitly ignored using the skip keyword in the plot command.
A single additional line containing text column headers may be present. It is skipped automatically if the plot
command refers explicitly to column headers, e.g. by using them for titles. Otherwise you may need to skip
it explicitly either by adding one to the skip count or by setting the attribute set datafile columnheaders.
See skip (p. 135), columnhead (p. 51), autotitle columnheader (p. 184), set datafile (p. 166).

Csv files

Syntax:

set datafile separator {whitespace | tab | comma | "chars"}

"csv" is short for "comma-separated values". The term "csv file" is loosely applied to files in which data
fields are delimited by a specific character, not necessarily a comma. To read data from a csv file you must
tell gnuplot what the field-delimiting character is. For instance to read from a file using semicolon as a field
delimiter:

set datafile separator ";"

See set datafile separator (p. 168). This applies only to files used for input. To create a csv file on
output, use the corresponding separator option to set table.

Every

The every keyword allows a periodic sampling of a data set to be plotted.

For ordinary files a "point" single record (line); a "block" of data is a set of consecutive records with blank
lines before and after the block.
For matrix data a "block" and "point" correspond to "row" and "column". See matrix every (p. 259).
Syntax:
plot ’file’ every {<point_incr>}
{:{<block_incr>}
{:{<start_point>}
{:{<start_block>}
{:{<end_point>}
{:<end_block>}}}}}

The data points to be plotted are selected according to a loop from <start_point> to <end_point> with
increment <point_incr> and the blocks according to a loop from <start_block> to <end_block> with
increment <block_incr>.

The first datum in each block is numbered ’0’, as is the first block in the file.
Note that records containing unplottable information are counted.

Any of the numbers can be omitted; the increments default to unity, the start values to the first point or
block, and the end values to the last point or block. ’:” at the end of the every option is not permitted. If
every is not specified, all points in all lines are plotted.

Examples:

every :::3::3 # selects just the fourth block (’0’ is first)

every :::::9 # selects the first 10 blocks

every 2:2 # selects every other point in every other block
#

selects points 5 through 15 in each block

132 gnuplot 5.5

See simple plot demos (simple.dem)
, Non-parametric splot demos

, and Parametric splot demos

Example datafile

This example plots the data in the file "population.dat" and a theoretical curve:

pop(x) = 103*exp((1965-x)/10)
set xrange [1960:1990]
plot ’population.dat’, pop(x)

The file "population.dat" might contain:
Gnu population in Antarctica since 1965

1965 103
1970 55
1975 34
1980 24
1985 10

Binary examples:
Selects two float values (second one implicit) with a float value
discarded between them for an indefinite length of 1D data.
plot ’<file_name>’ binary format="Yfloat)*float" using 1:2 with lines

The data file header contains all details necessary for creating
coordinates from an EDF file.

plot ’<file_name>’ binary filetype=edf with image

plot ’<file_name>.edf’ binary filetype=auto with image

Selects three unsigned characters for components of a raw RGB image
and flips the y-dimension so that typical image orientation (start

at top left corner) translates to the Cartesian plane. Pixel

spacing is given and there are two images in the file. One of them
is translated via origin.

plot ’<file_name>’ binary array=(512,1024):(1024,512) format=’%uchar’ \
dx=2:1 dy=1:2 origin=(0,0):(1024,1024) flipy u 1:2:3 w rgbimage

H O H

Four separate records in which the coordinates are part of the
data file. The file was created with a endianess different from
the system on which gnuplot is running.

splot ’<file_name>’ binary record=30:30:29:26 endian=swap u 1:2:3

Same input file, but this time we skip the 1st and 3rd records
splot ’<file_name>’ binary record=30:26 skip=360:348 endian=swap u 1:2:3

See also binary matrix (p. 257).

Filters

Filter operations are applied immediately after reading input data, before applying any smoothing or style-
specific processing options. In general the purpose of a filter is to replace the original full set of input points
with a selected subset of points, possibly regrouped or reordered. The filters currently supported are bins,
convexhull, mask, and zsort.

http://www.gnuplot.info/demo/simple.html
http://www.gnuplot.info/demo/surface1.html
http://www.gnuplot.info/demo/surface2.html

gnuplot 5.5 133

Bins Syntax:
plot °DATA’ using <XCOL> {:<YCOL>} bins{=<NBINS>}
{binrange [<LOW>:<HIGH>]} {binwidth=<width>}
{binvalue={sum|avg}}

The bins option to a plot command first assigns the original data to equal width bins on x and then plots
a single value per bin. The default number of bins is controlled by set samples, but this can be changed
by giving an explicit number of bins in the command.

If no binrange is given, the range is taken from the extremes of the x values found in "DATA’.

Given the range and the number of bins, bin width is calculated automatically and points are assigned to
bins 0 to NBINS-1

BINWIDTH = (HIGH - LOW) / (NBINS-1)

xmin = LOW - BINWIDTH/2

xmax = HIGH + BINWIDTH/2

first bin holds points with (xmin <= x < xmin + BINWIDTH)

last bin holds points with (xmax-BINWIDTH <= x < xman)

each point is assigned to bin i = floor(NBINS * (x-xmin)/(xmax-xmin))

Alternatively you can provide a fixed bin width, in which case nbins is calculated as the smallest number of
bins that will span the range.

On output bins are plotted or tabulated by midpoint. E.g. if the program calculates bin width as shown
above, the x coordinate output for the first bin is x=LOW (not x=xmin).

If only a single column is given in the using clause then each data point contributes a count of 1 to the
accumulation of total counts in the bin for that x coordinate value. If a second column is given then the
value in that column is added to the accumulation for the bin. Thus the following two plot commands are
equivalent:

plot ’DATA" using N bins=20

set samples 20

plot ’DATA’ using (column(N)): (1)

By default the y value plotted for each bin is the sum of the y values over all points in that bin. This
corresponds to option binvalue=sum. The alternative binvalue=avg plots the mean y value for points
in that bin.

For related processing options see smooth frequency (p. 137) and smooth kdensity (p. 138).

Convexhull Convexhull is not a plot style. It can appear either alone as a filter keyword or as an option
of the smooth keyword.

plot FOO using x:y convexhull
plot FOO using x:y smooth convexhull {expand <scale>}

The points in dataset FOO are replaced by a subset

of the original points that constitute a bounding con-

vex polygon. The vertices of this polygon, the convex 20 -
hull, are generated in clockwise order to form a closed
curve. The first and last points of the generated curve

are equal, making it suitable for plotting with lines or 0
with filledcurves. The convex hull may also be useful .10 |
to selectively render a region of an image or a pm3d sur-
face that contains all the original data points. See with
mask (p. 95).

Convex hull bounding scattered points

1 1 1 1 1

-20 -10 0 10 20
If the keyword smooth is present, the vertices are then used as guide points to generate a smooth closed
curve (see smooth path (p. 136)). By default this smoothed curve runs through the bounding points.

134 gnuplot 5.5

The optional scale factor shifts the guide points away from the centroid so that for scale values greater than
1.0 all data points lie within the smoothed curve.

Mask

plot FOO using 1:2:3 mask with {pm3d|image}

Once a mask has been defined, you can use it as a filter to select a subset of points from an image or pm3d
plot. See masking (p. 95).

Zsort

plot FOO using x:y:z:color zsort with points lc palette

Input data is sorted immediately after input, prior to applying any smoothing options. Note that some
smoothing options will re-sort the data, in which case zsort has no effect on the plot. If z is not auto-scaled,
points with z value out of range are flagged but not deleted.

The intended use is to filter presentation of 2D scatter plots with a huge number of points so that the
distribution of high-scoring points remains evident. Sorting the points on z guarantees that points with a
high z-value will not be obscured by points with lower z-values.

Index

The index keyword allows you to select specific data sets in a multi-data-set file for plotting. For array
indexing please see arrays (p. 57).

Syntax:
plot ’file’ index { <m>{:<n>{:<p>}} | "<name>" }

Data sets are separated by pairs of blank records. index <m> selects only set <m>; index <m>:<n>
selects sets in the range <m> to <n>; and index <m>:<n>:<p> selects indices <m>, <m>+<p>,
<m>+2<p>, etc., but stopping at <n>. Following C indexing, the index 0 is assigned to the first data set
in the file. Specifying too large an index results in an error message. If <p> is specified but <n> is left
blank then every <p>-th dataset is read until the end of the file. If index is not specified, the entire file is
plotted as a single data set.

Example:
plot ’file’ index 4:5

For each point in the file, the index value of the data set it appears in is available via the pseudo-column
column(-2). This leads to an alternative way of distinguishing individual data sets within a file as shown
below. This is more awkward than the index command if all you are doing is selecting one data set for
plotting, but is very useful if you want to assign different properties to each data set. See pseudocolumns
(p. 141), lc variable (p. 63).

Example:
plot ’file’ using 1:(column(-2)==4 7 $2 : NaN) # very awkward
plot ’file’ using 1:2:(column(-2)) linecolor variable # very useful!

index ’<name>’ selects the data set with name '<name>’. Names are assigned to data sets in comment
lines. The comment character and leading white space are removed from the comment line. If the resulting
line starts with <name>, the following data set is now named <name> and can be selected.

Example:
plot ’file’ index ’Population’

Please note that every comment that starts with <name> will name the following data set. To avoid
problems it may be useful to choose a naming scheme like '== Population ==’ or ’[Population]’.

http://www.gnuplot.info/demo/multimsh.html

gnuplot 5.5 135

Skip

The skip keyword tells the program to skip lines at the start of a text (i.e. not binary) data file. The lines
that are skipped do not count toward the line count used in processing the every keyword. Note that skip
N skips lines only at the start of the file, whereas every ::IN skips lines at the start of every block of data
in the file. See also binary skip (p. 126) for a similar option that applies to binary data files.

Smooth

gnuplot includes a few routines for interpolation and other operations applied to data as it is input; these are
grouped under the smooth option. More sophisticated data processing may be performed by preprocessing
the data externally or by using fit with an appropriate model. See also the discussion of plot filters
(p. 132).

Syntax:
smooth {unique | frequency | fnormal | cumulative | cnormal
| csplines | acsplines | mcsplines | path | bezier | sbezier
| kdensity {bandwidth} {period}
| convexhull {expand}
| unwrap}

The unique, frequency, fnormal, cumulative and cnormal options sort the data on x and then plot
some aspect of the distribution of x values.

The spline and Bezier options determine coefficients describing a continuous curve between the endpoints
of the data. This curve is then plotted in the same manner as a function, that is, by finding its value at
uniform intervals along the abscissa (see set samples (p. 221)) and connecting these points with straight
line segments. If the data set is interrupted by blank lines or undefined values a separate continuous curve
is fit for each uninterrupted subset of the data. Adjacent separately fit segments may be separated by a gap
or discontinuity.

unwrap manipulates the data to avoid jumps of more than pi by adding or subtracting multiples of 2*pi.
If autoscale is in effect, axis ranges will be computed for the final curve rather than for the original data.

If autoscale is not in effect, and a spline curve is being generated, sampling of the spline fit is done across
the intersection of the x range covered by the input data and the fixed abscissa range defined by set xrange.

If too few points are available to apply the requested smoothing operation an error message is produced.
The smooth options have no effect on function plots.

Smoothing in 3D plots (splot) is currently limited to generating a natural cubic spline to pass through a
set of 3D points. In the general case the splines are generated along a trajectory (smooth path). For a
2D projection of 3D data smooth csplines acts as it does in 2D. Either keyword is accepted in an splot
command.

splot $DATA using 1:2:3 smooth path with lines

Acsplines The smooth acsplines option approximates the data with a natural smoothing spline. After
the data are made monotonic in x (see smooth unique (p. 137)), a curve is piecewise constructed from
segments of cubic polynomials whose coefficients are found by fitting to the individual data points weighted
by the value, if any, given in the third column of the using spec. The default is equivalent to

plot ’data-file’ using 1:2:(1.0) smooth acsplines

Qualitatively, the absolute magnitude of the weights determines the number of segments used to construct
the curve. If the weights are large, the effect of each datum is large and the curve approaches that produced
by connecting consecutive points with natural cubic splines. If the weights are small, the curve is composed
of fewer segments and thus is smoother; the limiting case is the single segment produced by a weighted linear

136 gnuplot 5.5

least squares fit to all the data. The smoothing weight can be expressed in terms of errors as a statistical
weight for a point divided by a "smoothing factor" for the curve so that (standard) errors in the file can be
used as smoothing weights.

Example:

sw(x,8)=1/(x*x*83)
plot ’data_file’ using 1:2:(sw($3,100)) smooth acsplines
splot ’data_file’ using 1:2:3:(sw($4,100)) smooth acsplines

EXPERIMENTAL: splot ... smooth acsplines with lines fits splines to the x, y, and z coordinates of
successive data points. Unlike the 2D case, the points are not sorted first so it is possible to fit splines to a
trajectory containing loops. Caution: In the general 3D case there are many more spline terms fitted, so the
weight value must be larger to achieve a comparable effect. Also note that fractional path length is used as
the implicit control variable and therefore the intervals being weighted do not match the projections onto a
single axis.

Bezier The smooth bezier option approximates the data with a Bezier curve of degree n (the number of
data points) that connects the endpoints.

Bins smooth bins is the same as bins. See bins (p. 133).

Convexhull See convexhull (p. 133).

Csplines The smooth csplines option connects consecutive points by natural cubic splines after rendering
the data monotonic on x (see smooth unique (p. 137)). The smoothed curve always passes through the
data points, so closely-spaced points may generate local bumps and excursions in the smoothed curve.

splot ... smooth csplines with lines fits splines to the x, y, and z coordinates of successive data points.
Unlike 2D csplines, the points are not sorted first so it is possible to fit splines to a trajectory containing
loops. In the general case three separate sets of spline coefficients are generated, each treating one coordinate
X, y, or z as a function of a shared implicit trajectory path parameter. This is equivalent to the 2D plot ...
smooth path option.

In the special case that the curve lies in the xz, yz, or xy plane then only a single set of spline coefficients
is generated. This allows you to generate a stack of smoothed curves in 3D where each one replicates the
spline fit you would have obtained from a 2D plot of the coordinates in projection.

Mcsplines The smooth mcsplines option connects consecutive points by cubic splines constrained such
that the smoothed function preserves the monotonicity and convexity of the original data points. This
reduces the effect of outliers. FN Fritsch & RE Carlson (1980) "Monotone Piecewise Cubic Interpolation",
SIAM Journal on Numerical Analysis 17: 238-246.

Path

gnuplot 5.5 137

The smooth path option generates cubic splines to fit

points in the order they are presented in the input data;

i.e. they are not first sorted on x. This generates a smooth path with filledcurves closed =1
smooth spline through a closed curve or along a trajec- smooth ?ﬁ:gl;ﬁld;gﬁ: °
tory that contains loops. This smoothing mode is sup-

ported for both 2D and 3D plot commands. As always,

a separate curve is created for each set of points in the

input file, where a blank line separates the sets. Plotting

smooth path with filledcurves closed will guarantee

that each set of points creates a closed curve. Plotting

smooth path with lines will generate a closed curve

if the first and last points in the set overlap, otherwise it will create an open-ended smooth path. See
smooth_path.dem

Sbezier The smooth sbezier option first renders the data monotonic (unique) and then applies the
bezier algorithm.

Unique The smooth unique option makes the data monotonic in x; points with the same x-value are
replaced by a single point having the average y-value. The resulting points are then connected by straight
line segments.

Unwrap The smooth unwrap option modifies the input data so that any two successive points will not
differ by more than pi; a point whose y value is outside this range will be incremented or decremented by
multiples of 2pi until it falls within pi of the previous point. This operation is useful for making wrapped
phase measurements continuous over time.

Frequency The smooth frequency option makes the data monotonic in x; points with the same x-value
are replaced by a single point having the summed y-values. To plot a histogram of the number of data values
in equal size bins, set the y-value to 1.0 so that the sum is a count of occurrences in that bin. This is done
implicitly if only a single column is provided. Example:

binwidth = <something> # set width of x values in each bin

bin(val) = binwidth * floor(val/binwidth)

plot "datafile" using (bin(column(1))):(1.0) smooth frequency

plot "datafile" using (bin(column(1))) smooth frequency # same result

See also smooth.dem

Fnormal The smooth fnormal option work just like the frequency option, but produces a normalized
histogram. It makes the data monotonic in x and normalises the y-values so they all sum to 1. Points with
the same x-value are replaced by a single point containing the sumed y-values. To plot a histogram of the
number of data values in equal size bins, set the y-value to 1.0 so that the sum is a count of occurrences in
that bin. This is done implicitly if only a single column is provided. See also smooth.dem

Cumulative The smooth cumulative option makes the data monotonic in x; points with the same x-
value are replaced by a single point containing the cumulative sum of y-values of all data points with lower
x-values (i.e. to the left of the current data point). This can be used to obtain a cumulative distribution
function from data. See also smooth.dem

Cnormal The smooth cnormal option makes the data monotonic in x and normalises the y-values onto
the range [0:1]. Points with the same x-value are replaced by a single point containing the cumulative sum
of y-values of all data points with lower x-values (i.e. to the left of the current data point) divided by the

http://www.gnuplot.info/demo_5.5/smooth_path.html
http://www.gnuplot.info/demo/smooth.html
http://www.gnuplot.info/demo/smooth.html
http://www.gnuplot.info/demo/smooth.html

138 gnuplot 5.5

total sum of all y-values. This can be used to obtain a normalised cumulative distribution function from
data (useful when comparing sets of samples with differing numbers of members). See also smooth.dem

Kdensity The smooth kdensity option generates and plots a kernel density estimate using Gaussian
kernels for the distribution from which a set of values was drawn. Values are taken from the first data
column, optional weights are taken from the second column. A Gaussian is placed at the location of each
point and the sum of all these Gaussians is plotted as a function. To obtain a normalized histogram, each
weight should be 1/number-of-points.

Bandwidth: By default gnuplot calculates and uses the bandwidth which would be optimal for normally
distributed data values.

default_bandwidth = sigma * (4/3N) *x (0.2)

This will usually be a very conservative, i.e. broad bandwidth. Alternatively, you can provide an explicit
bandwidth.

plot $DATA smooth kdensity bandwidth <value> with boxes

The bandwidth used in the previous plot is stored in GPVAL_KDENSITY_BANDWIDTH.

Period: For periodic data individual Gaussian components should be treated as repeating at intervals of one
period. One example is data measured as a function of angle, where the period is 2pi. Another example is
data indexed by day-of-year and measured over multiple years, where the period is 365. In such cases the
period should be provided in the plot command:

plot $ANGULAR_DAT smooth kdensity period 2*pi with lines

Special-filenames

There are a few filenames that have a special meaning: ’’, -, '+’ and '++".

The empty filename ’’ tells gnuplot to re-use the previous input file in the same plot command. So to plot
two columns from the same input file:

plot ’filename’ using 1:2, ’’ using 1:3

The filename can also be reused over subsequent plot commands, however save then only records the name
in a comment.

The special filenames '+’ and '++’ are a mechanism to allow the full range of using specifiers and plot styles
with inline functions. Normally a function plot can only have a single y (or z) value associated with each
sampled point. The pseudo-file '+’ treats the sampled points as column 1, and allows additional column
values to be specified via a using specification, just as for a true input file. The number of samples is
controlled via set samples. By default samples are generated over the range given by set trange, or if
trange has not been set than over the full range of set xrange.

Note: The use of trange is a change from previous gnuplot versions. It allows the sampling range to differ
from the x axis range.

plot ’+’ using ($1):(sin($1)):(sin($1)**2) with filledcurves

An independent sampling range can be provided immediately before the '+’. As in normal function plots,
a name can be assigned to the independent variable. If given for the first plot element, the sampling range
specifier has to be preceded by the sample keyword (see also plot sampling (p. 144)).

plot sample [beta=0:2%pi] ’+’ using (sin(beta)):(cos(beta)) with lines

Additionally, the range specifier of "+’ supports giving a sampling increment.

plot $MYDATA, [t=-3:25:1] ’+’ using (t):(£(t))

http://www.gnuplot.info/demo/smooth.html

gnuplot 5.5 139

The pseudo-file '++’ returns 2 columns of data forming a regular grid of [u,v] coordinates with the number
of points along u controlled by set samples and the number of points along v controlled by set isosamples.
You must set urange and vrange before plotting '++’. However the x and y ranges can be autoscaled or can
be explicitly set to different values than urange and vrange. Examples:

splot ’++’ using 1:2:(sin($1)*sin($2)) with pm3d

plot ’++’ using 1:2:(sin($1)*sin($2)) with image
The special filename ’-’ specifies that the data are inline; i.e., they follow the command. Only the data
follow the command; plot options like filters, titles, and line styles remain on the plot command line. This
is similar to << in unix shell script, and $DECK in VMS DCL. The data are entered as though they are
being read from a file, one data point per record. The letter "e" at the start of the first column terminates
data entry.

’-? is intended for situations where it is useful to have data and commands together, e.g. when both are

piped to gnuplot from another application. Some of the demos, for example, might use this feature. While
plot options such as index and every are recognized, their use forces you to enter data that won’t be used.
For all but the simplest cases it is probably easier to first define a datablock and then read from it rather
than from ’-’. See datablocks (p. 60).

If you use -’ with replot, you may need to enter the data more than once. See replot (p. 151), refresh
(p- 151). Here again it may be better to use a datablock.

A blank filename (’’) specifies that the previous filename should be reused. This can be useful with things
like
plot ’a/very/long/filename’ using 1:2, ’’ using 1:3, ’’ using 1:4

(If you use both ’-* and *” on the same plot command, you’ll need to have two sets of inline data, as in the
example above.)

Piped-data

On systems with a popen function, the datafile can be piped through a shell command by starting the file
name with a ’<’. For example,

pop(x) = 103*exp(-x/10)

plot "< awk ’{print $1-1965, $2}’ population.dat", pop(x)

would plot the same information as the first population example but with years since 1965 as the x axis. If
you want to execute this example, you have to delete all comments from the data file above or substitute
the following command for the first part of the command above (the part up to the comma):

plot "< awk ’$0 !~ /~#/ {print $1-1965, $2}’ population.dat"

While this approach is most flexible, it is possible to achieve simple filtering with the using keyword.

On systems with an fdopen() function, data can be read from an arbitrary file descriptor attached to either
a file or pipe. To read from file descriptor n use *<&mn’. This allows you to easily pipe in several data files
in a single call from a POSIX shell:

$ gnuplot -p -e "plot ’<&3’, ’<&4’" 3<data-3 4<data-4

$./gnuplot 5< <(myprogram -with -options)

gnuplot> plot ’<&5’

Using

The most common datafile modifier is using. It tells the program which columns of data in the input file
are to be plotted.

Syntax:

140 gnuplot 5.5

plot ’file’ using <entry> {:<entry> {:<entry> ...}} {’format’}

Each <entry> may be a simple column number that selects the value from one field of the input file, a string
that matches a column label in the first line of a data set, an expression enclosed in parentheses, or a special
function not enclosed in parentheses such as xticlabels(2).

If the entry is an expression in parentheses, then the function column(N) may be used to indicate the value
in column N. That is, column(1) refers to the first item read, column(2) to the second, and so on. The
special symbols $1, $2, ... are shorthand for column(1), column(2) ...

The special symbol $# evaluates to the total number of columns in the current line of input, so column($#)
or stringcolumn ($#) always returns the content of the final column even if the number of columns is unknown
or different lines in the file contain different numbers of columns.

The function valid(IN) tests whether column N contains a valid number. It returns 0 if the column value
is missing, uninterpretable, or NaN. If each column of data in the input file contains a label in the first row
rather than a data value, this label can be used to identify the column on input and/or in the plot legend.
The column() function can be used to select an input column by label rather than by column number. For
example, if the data file contains

Height Weight Age

vall vall vall

then the following plot commands are all equivalent
plot ’datafile’ using 3:1, ’’ using 3:2
plot ’datafile’ using (column("Age")):(column(1)), \
> using (column("Age")):(column(2))
plot ’datafile’ using "Age":"Height", ’’ using "Age":"Weight"

The full string must match. Comparison is case-sensitive. To use column labels in the plot legend, use set
key autotitle columnhead or use function columnhead(IN) when specifying an individual title.

In addition to the actual columns 1...N in the input data file, gnuplot presents data from several "pseudo-
columns" that hold bookkeeping information. E.g. $0 or column(0) returns the sequence number of this
data record within a dataset. Please see pseudocolumns (p. 141).

An empty <entry> will default to its order in the list of entries. For example, using ::4 is interpreted as
using 1:2:4.

If the using list has only a single entry, that <entry> will be used for y and the data point number (pseudo-
column $0) is used for x; for example, "plot ’file’ using 1" is identical to "plot ’file’ using 0:1". If the
using list has two entries, these will be used for x and y. See set style (p. 223) and fit (p. 110) for details
about plotting styles that make use of data from additional columns of input.

Format If a format is specified, it is used to read in each datafile record using the C library ’scanf’ function.
Otherwise the record is interpreted as consisting of columns (fields) of data separated by whitespace (spaces
and/or tabs), but see datafile separator (p. 168).

‘scanf’ itself accepts several numerical specifications but gnuplot requires all inputs to be double-precision
floating-point variables, so "%Ilf" is essentially the only permissible specifier. The format string must contain
at least one such input specifier and no more than seven of them. ’scanf’ expects to see white space — a
blank, tab ("\t"), newline ("\n"), or formfeed ("\f") — between numbers; anything else in the input stream
must be explicitly skipped.

Note that the use of "\t", "\n", or "\f" requires use of double-quotes rather than single-quotes.

Using_examples This creates a plot of the sum of the 2nd and 3rd data against the first: The format string
specifies comma- rather than space-separated columns. The same result could be achieved by specifying set
datafile separator comma.

gnuplot 5.5 141

plot ’file’ using 1:($2+$3) ’%1f,%1f,%1f’

In this example the data are read from the file "MyData" using a more complicated format:
plot ’MyData’ using "%*1£f%1£%*20["\n]%1lf"

The meaning of this format is:

%x1f ignore a number

%1t read a double-precision number (x by default)
%*20["\n] ignore 20 non-newline characters

%1f read a double-precision number (y by default)

One trick is to use the ternary ?7: operator to filter data:
plot ’file’ using 1:($3>10 7 $2 : 1/0)

which plots the datum in column two against that in column one provided the datum in column three exceeds
ten. 1/0 is undefined; gnuplot quietly ignores undefined points, so unsuitable points are suppressed. Or
you can use the pre-defined variable NaN to achieve the same result.

In fact, you can use a constant expression for the column number, provided it doesn’t start with an opening
parenthesis; constructs like using 0+ (complicated expression) can be used. The crucial point is that
the expression is evaluated once if it doesn’t start with a left parenthesis, or once for each data point read
if it does.

If timeseries data are being used, the time can span multiple columns. The starting column should be
specified. Note that the spaces within the time must be included when calculating starting columns for
other data. E.g., if the first element on a line is a time with an embedded space, the y value should be
specified as column three.

It should be noted that (a) plot ’file’, (b) plot ’file’ using 1:2, and (c) plot ’file’ using ($1):($2) can
be subtly different. The exact behaviour has changed in version 5. See missing (p. 166).

It is often possible to plot a file with lots of lines of garbage at the top simply by specifying
plot ’file’ using 1:2

However, if you want to leave text in your data files, it is safer to put the comment character (#) in the first
column of the text lines.

Pseudocolumns Expressions in the using clause of a plot statement can refer to additional bookkeeping
values in addition to the actual data values contained in the input file. These are contained in "pseudo-
columns".
column(0) The sequential order of each point within a data set.
The counter starts at O, increments on each non-blank,
non-comment line, and is reset by two sequential blank
records. For data in non-uniform matrix format, column(0)
is the linear order of each matrix element.
The shorthand form $0 is available.
column(-1) This counter starts at O, increments on a single blank line,
and is reset by two sequential blank lines.
This corresponds to the data line in array or grid data.
It can also be used to distinguish separate line segments
or polygons within a data set.
column(-2) Starts at O and increments on two sequential blank lines.
This is the index number of the current data set within a
file that contains multiple data sets. See ‘index‘.
column($#) The special symbol $# evaluates to the total number of
columns available, so column($#) refers to the last
(rightmost) field in the current input line.
column($# - 1) would refer to the last-but-one column, etc.

142 gnuplot 5.5

Arrays When the data source being plotted is an array or array-valued function, the "columns" in a using
specification are interpreted as below. See arrays (p. 57) for more detail.

column 1 the array index

column 2 the real component of a numerical array entry
or the string value of a string array entry

column 3 the imaginary part of a numerical array entry

Key The layout of certain plot styles (column-stacked histograms, spider plots) is such that it would make
no sense to generate plot titles from a data column header. Also it would make no sense to generate axis tic
labels from the content of a data column (e.g. using 2:3:xticlabels(1)). These plots styles instead use the
form using 2:3:key(1) to generate plot titles for the key from the text content of a data column, usually a
first column of row headers. See the example given for spiderplot (p. 98).

Xticlabels Axis tick labels can be generated via a string function, usually taking a data column as an
argument. The simplest form uses the data column itself as a string. That is, xticlabels(N) is shorthand for
xticlabels(stringcolumn(N)). This example uses the contents of column 3 as x-axis tick labels.

plot ’datafile’ using <xcol>:<ycol>:xticlabels(3) with <plotstyle>

Axis tick labels may be generated for any of the plot axes: x x2 y y2 z. The ticlabels(<labelcol>) specifiers
must come after all of the data coordinate specifiers in the using portion of the command. For each data
point which has a valid set of X,Y[,Z] coordinates, the string value given to xticlabels() is added to the list
of xtic labels at the same X coordinate as the point it belongs to. xticlabels() may be shortened to xtic()
and so on.

Example:

splot "data" using 2:4:6:xtic(1):ytic(3):ztic(6)

In this example the x and y axis tic labels are taken from different columns than the x and y coordinate
values. The z axis tics, however, are generated from the z coordinate of the corresponding point.

Example:

plot "data" using 1:2:xtic($3 > 10. 7 "A" : "B")

This example shows the use of a string-valued function to generate x-axis tick labels. Each point in the data
file generates a tick mark on x labeled either "A" or "B" depending on the value in column 3.

X2ticlabels See plot using xticlabels (p. 142).

Yticlabels See plot using xticlabels (p. 142).

Y2ticlabels See plot using xticlabels (p. 142).

Zticlabels See plot using xticlabels (p. 142).

Cbticlabels EXPERIMENTAL (details may change in a future release version) 2D plots: colorbar labels
are placed at the palette coordinate used by the plot for variable coloring "lc palette z". 3D plots: colorbar
labels are placed at the z coordinate of the point. Note that in the case of a 3D heat map with variable color
that does not match z, this is probably not the correct label. See also plot using xticlabels (p. 142).

gnuplot 5.5 143

Volatile

The volatile keyword in a plot command indicates that the data previously read from the input stream or
file may not be available for re-reading. This tells the program to use refresh rather than replot commands
whenever possible. See refresh (p. 151).

Functions

Built-in or user-defined functions can be displayed by the plot and splot commands in addition to, or instead
of, data read from a file. The requested function is evaluated by sampling at regular intervals spanning the
independent axis range[s]. See set samples (p. 221) and set isosamples (p. 180). Example:
approx(ang) = ang - ang**3 / (3%2)
plot sin(x) title "sin(x)", approx(x) title "approximation"

To set a default plot style for functions, see set style function (p. 227). For information on built-in
functions, see expressions functions (p. 42). For information on defining your own functions, see user-
defined (p. 56).

Parametric

When in parametric mode (set parametric) mathematical expressions must be given in pairs for plot and
in triplets for splot.
Examples:

plot sin(t),t**2
splot cos(u)*cos(v),cos(u)*sin(v),sin(u)

Data files are plotted as before, except any preceding parametric function must be fully specified before a
data file is given as a plot. In other words, the x parametric function (sin(t) above) and the y parametric
function (t**2 above) must not be interrupted with any modifiers or data functions; doing so will generate
a syntax error stating that the parametric function is not fully specified.

Other modifiers, such as with and title, may be specified only after the parametric function has been
completed:

plot sin(t),t**2 title ’Parametric example’ with linespoints

See also Parametric Mode Demos.

Ranges

This section describes only the optional axis ranges that may appear as the very first items in a plot or splot
command. If present, these ranges override any range limits established by a previous set range statement.
For optional ranges elsewhere in a plot command that limit sampling of an individual plot component, see
sampling (p. 144).

Syntax:

[{<dummy-var>=}{{<min>}:{<max>}}]
[({{<min>}:{<max>}}]

The first form applies to the independent variable (xrange or trange, if in parametric mode). The second
form applies to dependent variables. <dummy-var> optionally establishes a new name for the independent
variable. (The default name may be changed with set dummy.)

In non-parametric mode, ranges must be given in the order

plot [<xrange>] [<yrange>] [<x2range>] [<y2range>]

http://www.gnuplot.info/demo/param.html

144 gnuplot 5.5

In parametric mode, ranges must be given in the order

plot [<trange>] [<xrange>] [<yrange>] [<x2range>] [<y2range>]

The following plot command shows setting trange to [-pi:pi], xrange to [-1.3:1.3] and yrange to [-1:1] for
the duration of the graph:

plot [-pi:pi] [-1.3:1.3] [-1:1] sin(t),t**2

* can be used to allow autoscaling of either of min and max. Use an empty range [] as a placeholder if
necessary.

Ranges specified on the plot or splot command line affect only that one graph; use the set xrange, set
yrange, etc., commands to change the default ranges for future graphs.

The use of on-the-fly range specifiers in a plot command may not yield the expected result for linked axes
(see set link (p. 190)).

For time data you must provide the range in quotes, using the same format used to read time from the
datafile. See set timefmt (p. 235).

Examples:

This uses the current ranges:
plot cos(x)

This sets the x range only:
plot [-10:30] sin(pi*x)/(pi*x)

This is the same, but uses t as the dummy-variable:
plot [t = -10 :30] sin(pi*t)/(pi*t)

This sets both the x and y ranges:
plot [-pi:pi] [-3:3] tan(x), 1/x

This sets only the y range:
plot [] [-2:sin(5)*-8] sin(x)**besjO(x)

This sets xmax and ymin only:
plot [:200] [-pi:] $mydata using 1:2

This sets the x range for a timeseries:
set timefmt "%d/%m/%y %H:%M"
plot ["1/6/93 12:00":"5/6/93 12:00"] ’timedata.dat’

Sampling
1D sampling (x or t axis)

By default, computed functions or data generated for the pseudo-file "+" are sampled over the entire range
of the plot as set by a prior set xrange command, by an explicit global range specifier at the very start of
the plot or splot command, or by autoscaling the xrange to span data seen in all the elements of this plot.
However, individual plot components can be assigned a more restricted sampling range.

Examples:

This establishes a total range on x running from 0 to 1000 and then plots data from a file and two functions
each spanning a portion of the total range:

set xrange [0:1000]

plot ’datafile’, [0:200] funcl(x), [200:500] func2(x)

gnuplot 5.5 145

This is similar except that the total range is established by the contents of the data file. In this case the
sampled functions may or may not be entirely contained in the plot:

set autoscale x

plot ’datafile’, [0:200] funcl(x), [200:500] func2(x)

This command is ambiguous. The initial range will be interpreted as applying to the entire plot, not solely
to the sampling of the first function as was probably the intent:

plot [0:10] £(x), [10:20] g(x), [20:30] h(x)

This command removes the ambiguity of the previous example by inserting the keyword sample so that the
range is not applied to the entire plot:
plot sample [0:10] f(x), [10:20] g(x), [20:30] h(x)

This example shows one way of tracing out a helix in a 3D plot
set xrange [-2:2]; set yrange [-2:2]
splot sample [h=1:10] ’+’ using (cos(h)):(sin(h)): (h)

2D sampling (u and v axes)

Computed functions or data generated for the pseudo-file '++’ use samples generated along the u and v axes.
This is a CHANGE from versions prior to 5.2 which sampled along the x and y axes. See special-filenames
++4 (p. 138). 2D sampling can be used in either plot or splot commands.

Example of 2D sampling in a 2D plot command. These commands generated the plot shown for plotstyle
with vectors. See vectors (p. 99).

set urange [-2.0 : 2.0]

set vrange [-2.0 : 2.0]

plot ’++’ using ($1):($2):($2%0.4):(-$1%0.4) with vectors

Example of 2D sampling in a 3D splot command. These commands are similar to the ones used in sam-
pling.dem. Note that the two surfaces are sampled over u and v ranges smaller than the full x and y ranges
of the resulting plot.

set title "3D sampling range distinct from plot x/y range"

set xrange [1:100]

set yrange [1:100]

splot sample [u=30:70] [v=0:50] ’++’ using 1:2:(uxv) 1t 3, \

[u=40:80] [v=30:60] ’++’ using (uw):(v):(uxsqrt(v)) 1t 4

The range specifiers for sampling on u and v can include an explicit sampling interval to control the number
and spacing of samples:
splot sample [u=30:70:1][v=0:50:5] ’++’ using 1:2:(func($1,$2))

For loops in plot command

If many similar files or functions are to be plotted together, it may be convenient to do so by iterating over
a shared plot command.

Syntax:

plot for [<variable> = <start> : <end> {:<increment>}]
plot for [<variable> in "string of words"]

The scope of an iteration ends at the next comma or the end of the command, whichever comes first. An
exception to this is that definitions are grouped with the following plot item even if there is an intervening
comma. Note that iteration does not work for plots in parametric mode.

Example:

146 gnuplot 5.5

plot for [j=1:3] sin(j*x)

Example:
plot for [dataset in "apples bananas"] dataset."dat" title dataset

In this example iteration is used both to generate a file name and a corresponding title.
Example:

file(n) = sprintf("dataset_%d.dat",n)
splot for [i=1:10] file(i) title sprintf("dataset %d",i)

This example defines a string-valued function that generates file names, and plots ten such files together.
The iteration variable (’i” in this example) is treated as an integer, and may be used more than once.

Example:

set key left
plot for [n=1:4] x**n sprintf("%d",n)

This example plots a family of functions.
Example:
list = "apple banana cabbage daikon eggplant"
item(n) = word(list,n)
plot for [i=1:words(list)] item[i].".dat" title item(i)
list = "new stuff"
replot

This example steps through a list and plots once per item. Because the items are retrieved dynamically, you
can change the list and then replot.

Example:
list = "apple banana cabbage daikon eggplant"
plot for [i in list] i.".dat" title i
list = "new stuff"
replot

This example does exactly the same thing as the previous example, but uses the string iterator form of the
command rather than an integer iterator.

If an iteration is to continue until all available data is consumed, use the symbol * instead of an integer
<end>. This can be used to process all columns in a line, all datasets (separated by 2 blank lines) in a file,
or all files matching a template.

Examples:
plot for [i=2:%] ’datafile’ using 1:i with histogram
splot for [i=0:*] ’datafile’ index i using 1:2:3 with lines
plot for [i=1:*] file=sprintf("File_}%03d.dat",i) file using 2 title file

Title

By default each plot is listed in the key by the corresponding function or file name. You can give an explicit
plot title instead using the title option.
Syntax:

title <text> | notitle [<ignored text>]

title columnheader | title columnheader (N)
{at {beginninglend}} {{nol}enhanced}

gnuplot 5.5 147

where <text> is a quoted string or an expression that evaluates to a string. The quotes will not be shown
in the key.

There is also an option that will interpret the first entry in a column of input data (i.e. the column header)
as a text field, and use it as the key title. See datastrings (p. 38). This can be made the default by
specifying set key autotitle columnhead.

The line title and sample can be omitted from the key by using the keyword notitle. A null title (title
’?) is equivalent to notitle. If only the sample is wanted, use one or more blanks (title *). If notitle is
followed by a string this string is ignored.

If key autotitles is set (which is the default) and neither title nor notitle are specified the line title is the
function name or the file name as it appears on the plot command. If it is a file name, any datafile modifiers
specified will be included in the default title.

The layout of the key itself (position, title justification, etc.) can be controlled using set key (p. 181).

The at keyword allows you to place the plot title somewhere outside the auto-generated key box. The title
can be placed immediately before or after the line in the graph itself by using at {beginning|end}. This
option may be useful when plotting with lines but makes little sense for most other styles.

To place the plot title at an arbitrary location on the page, use the form at <x-position>,<y-position>.
By default the position is interpreted in screen coordinates; e.g. at 0.5, 0.5 is always the middle of the
screen regardless of plot axis scales or borders. The format of titles placed in this way is still affected by key
options. See set key (p. 181).

Examples:
This plots y=x with the title x’:
plot x

This plots x squared with title "x~2" and file "data.1" with title "measured data":
plot x**2 title "x"2", ’data.l’ t "measured data"

Plot multiple columns of data, each of which contains its own title on the first line of the file. Place the
titles after the corresponding lines rather than in a separate key:

unset key

set offset 0, graph 0.1

plot for [i=1:4] ’data’ using i with lines title columnhead at end

Create a single key area for two separate plots:
set key Left reverse
set multiplot layout 2,2
plot sin(x) with points pt 6 title "Left plot is sin(x)" at 0.5, 0.30
plot cos(x) with points pt 7 title "Right plot is cos(x)" at 0.5, 0.27
unset multiplot

With

Functions and data may be displayed in one of a large number of styles. The with keyword provides the
means of selection.
Syntax:

with <style> { {linestyle | 1s <line_style>}
| {{linetype | 1t <line_type>}
|
|
|
|

{linewidth | lw <line_width>}
{linecolor | 1lc <colorspec>}
{pointtype | pt <point_type>}

{pointsize | ps <point_size>}

148 gnuplot 5.5

{arrowstyle | as <arrowstyle_index>}
{£fi1ll1 | fs <fillstyle>} {fillcolor | fc <colorspec>}
{nohidden3d} {nocontours} {nosurface}

{palettel}}
¥

where <style> is one of
lines dots steps vectors yerrorlines
points impulses fsteps xerrorbar Xyerrorbars
linespoints 1labels histeps xerrorlines xyerrorlines
financebars surface arrows yerrorbar parallelaxes

or
boxes boxplot ellipses histograms rgbalpha
boxerrorbars candlesticks filledcurves image rgbimage
boxxyerror circles fillsteps pm3d polygons
isosurface zerrorfill

or
table mask

The first group of styles have associated line, point, and text properties. The second group of styles also have
fill properties. See fillstyle (p. 226). Some styles have further sub-styles. See plotting styles (p. 77)
for details of each. Two special styles produce no immediate plot. See set table (p. 231) and with mask
(p- 95). The table style produces tabular output to a text file or data block. A plot component whose style
is with mask defines a set of polygonal regions that can be used to mask subsequent plot elements.

A default style may be chosen by set style function and set style data.

By default, each function and data file will use a different line type and point type, up to the maximum
number of available types. All terminal drivers support at least six different point types, and re-use them, in
order, if more are required. To see the complete set of line and point types available for the current terminal,
type test (p. 264).

If you wish to choose the line or point type for a single plot, <line_type> and <point_type> may be specified.
These are positive integer constants (or expressions) that specify the line type and point type to be used for
the plot. Use test to display the types available for your terminal.

You may also scale the line width and point size for a plot by using <line_width> and <point_size>, which
are specified relative to the default values for each terminal. The pointsize may also be altered globally —
see set pointsize (p. 218) for details. But note that both <point_size> as set here and as set by set
pointsize multiply the default point size; their effects are not cumulative. That is, set pointsize 2; plot
x with points ps 3 will use points three times the default size, not six.

It is also possible to specify pointsize variable either as part of a line style or for an individual plot. In
this case one extra column of input is required, i.e. 3 columns for a 2D plot and 4 columns for a 3D splot.
The size of each individual point is determined by multiplying the global pointsize by the value read from
the data file.

If you have defined specific line type/width and point type/size combinations with set style line, one of
these may be selected by setting <line_style> to the index of the desired style.

Both 2D and 3D plots (plot and splot commands) can use colors from a smooth palette set previously with
the command set palette. The color value corresponds to the z-value of the point itself or to a separate
color coordinate provided in an optional additional using column. Color values may be treated either as
a fraction of the palette range (palette frac) or as a coordinate value mapped onto the colorbox range
(palette or palette z). See colorspec (p. 62), set palette (p. 206), linetypes (p. 61).

The keyword nohidden3d applies only to plots made with the splot command. Normally the global option
set hidden3d applies to all plots in the graph. You can attach the nohidden3d option to any individual

gnuplot 5.5 149

plots that you want to exclude from the hidden3d processing. The individual elements other than surfaces
(i.e. lines, dots, labels, ...) of a plot marked nohidden3d will all be drawn, even if they would normally be
obscured by other plot elements.

Similarly, the keyword nocontours will turn off contouring for an individual plot even if the global property
set contour is active.

Similarly, the keyword nosurface will turn off the 3D surface for an individual plot even if the global
property set surface is active.

The keywords may be abbreviated as indicated.

Note that the linewidth, pointsize and palette options are not supported by all terminals.
Examples:

This plots sin(x) with impulses:

plot sin(x) with impulses

This plots x with points, x**2 with the default:
plot x w points, x**2

This plots tan(x) with the default function style, file "data.1" with lines:
plot tan(x), ’data.l’ with 1

This plots "leastsq.dat" with impulses:
plot ’leastsq.dat’ w i

This plots the data file "population" with boxes:
plot ’population’ with boxes

This plots "exper.dat" with errorbars and lines connecting the points (errorbars require three or four
columns):
plot ’exper.dat’ w lines, ’exper.dat’ notitle w errorbars

Another way to plot "exper.dat" with errorlines (errorbars require three or four columns):
plot ’exper.dat’ w errorlines

This plots sin(x) and cos(x) with linespoints, using the same line type but different point types:
plot sin(x) with linesp 1t 1 pt 3, cos(x) with linesp 1t 1 pt 4

This plots file "data" with points of type 3 and twice usual size:
plot ’data’ with points pointtype 3 pointsize 2

This plots file "data" with variable pointsize read from column 4
plot ’data’ using 1:2:4 with points pt 5 pointsize variable

This plots two data sets with lines differing only by weight:
plot ’d1’ t "good" w 1 1t 2 1w 3, ’d2’ t "bad" w1 1t 2 1w 1

This plots filled curve of x*x and a color stripe:
plot x*x with filledcurve closed, 40 with filledcurve y=10

This plots x*x and a color box:
plot x*x, (x>=-5 && x<=5 7 40 : 1/0) with filledcurve y=10 1t 8

This plots a surface with color lines:
splot x*x-y*y with line palette

This plots two color surfaces at different altitudes:
splot x*x-y*y with pm3d, x*x+y*y with pm3d at t

150 gnuplot 5.5

Print

Syntax:

print <expression> {, <expression>, ...}

The print command prints the value of one or more expressions. Qutput is to the screen unless it has been
redirected using the set print command. See expressions (p. 41). See also printerr (p. 150).

An <expression> may be any valid gnuplot expression, including numeric or string constants, a function
returning a number or string, an array, or the name of a variable. It is also possible to print a datablock. The
sprintf and gprintf functions can be used in conjunction with print for additional flexibility in formatting
the output.

You can use iteration within a print command to include multiple values on a single line of output.

Examples:

print 123 + 456

print sinh(pi/2)

print "rms of residuals (FIT_STDFIT) is ", FIT_STDFIT

print sprintf("rms of residuals is %.3f after fit", FIT_STDFIT)
print "Array A: ", A

print "Individual elements of array A: ", for [i=1:|A|] A[i]
print $DATA

Printerr

printerr is the same as print except that output is always sent to stderr even while redirection from a prior
set print command remains in effect.

Pwd

The pwd command prints the name of the working directory to the screen.

Note that if you wish to store the current directory into a string variable or use it in string expressions, then
you can use variable GPVAL_PWD, see show variables all (p. 255).

Quit

quit is a synonym for the exit command. See exit (p. 109).

Raise

Syntax:

raise {plot_window_id}
lower {plot_window_id}

The raise and lower commands function for only a few terminal types and may depend also on your window
manager and display preference settings.

set term wxt 123 # create first plot window
plot $FOO

gnuplot 5.5 151

lower # lower the only plot window that exists so far
set term wxt 456 # create 2nd plot window may occlude the first one
plot $BAZ

raise 123 # raise first plot window

These commands are known to be unreliable.

Refresh

The refresh command is similar to replot, with two major differences. refresh reformats and redraws
the current plot using the data already read in. This means that you can use refresh for plots with inline
data (pseudo-device ’-’) and for plots from datafiles whose contents are volatile. You cannot use the refresh
command to add new data to an existing plot.

Mousing operations, in particular zoom and unzoom, will use refresh rather than replot if appropriate.
Example:

plot ’datafile’ volatile with lines, ’-’ with labels
100 200 "Special point"

e

Various mousing operations go here

set title "Zoomed in view"

set term post

set output ’zoom.ps’

refresh

Replot

The replot command without arguments repeats the last plot or splot command. This can be useful for
viewing a plot with different set options, or when generating the same plot for several devices.

Arguments specified after a replot command will be added onto the last plot or splot command (with
an implied ', separator) before it is repeated. replot accepts the same arguments as the plot and splot
commands except that ranges cannot be specified. Thus you can use replot to plot a function against the
second axes if the previous command was plot but not if it was splot.

Note:

plot -’ ; ... ; replot
is not recommended, because it will require that you type in the data all over again. In most cases you can
use the refresh command instead, which will redraw the plot using the data previously read in.
Note that in multiplot mode, replot can only reproduce the most recent component plot, not the full set.
See also command-line-editing (p. 36) for ways to edit the last plot (p. 124) (splot (p. 255)) command.

See also show plot (p. 255) to show the whole current plotting command, and the possibility to copy it
into the history (p. 120).

Reread

[DEPRECATED in version 5.4]

This command is deprecated in favor of explicit iteration. See iterate (p. 60). The reread command
causes the current gnuplot command file, as specified by a load command, to be reset to its starting point

152 gnuplot 5.5

before further commands are read from it. This essentially implements an endless loop of the commands
from the beginning of the command file to the reread command. The reread command has no effect when
reading interactively (from stdin).

Reset

reset {bind | errors | session}

The reset command causes all graph-related options that can be set with the set command to return to
their default values. This command can be used to restore the default settings after executing a loaded
command file, or to return to a defined state after lots of settings have been changed.

The following are not affected by reset:

‘set term‘ ‘set output‘ ‘set loadpath‘ ‘set linetype‘ ‘set fit®
‘set encoding‘ ‘set decimalsign‘ ‘set locale‘ ‘set psdir‘
‘set overflow‘ ‘set multiplot®

Note that reset does not necessarily return settings to the state they were in at program entry, because the
default values may have been altered by commands in the initialization files gnuplotrc, SHOME/.gnuplot,
or $XDG_CONFIG_HOME/gnuplot/gnuplotrc. However, these commands can be re-executed by using the
variant command reset session.

reset session deletes any user-defined variables and functions, restores default settings, and
then re-executes the system-wide gnuplotrc initialization file and any private $HOME/.gnuplot or
$XDG_CONFIG_HOME/gnuplot/gnuplotrc preferences file. See initialization (p. 69).

reset errors clears only the error state variables GPVAL_ERRNO and GPVAL_ERRMSG.
reset bind restores all hotkey bindings to their default state.

Return

Syntax:

return <expression>

The return command acts the same way as the exit and quit commands in that it terminates execution
of the current code block or input stream. The return value is meaningful only in the context of executing
code in a function block. See function blocks (p. 118).

Example:

function $myfun << EOF

local result = 0

if (error-condition) { return -1 }
. body of function ...

return result

EOQF

Save

Syntax:

save {functions | variables | terminal | set | fit | datablocks}
’<filename>’ {append}

gnuplot 5.5 153

If no option is specified, gnuplot saves functions, user variables, set options and the most recent plot or
splot command. The current status of set term and set output is written as a comment.

Saved files are written in text format and may be read by the load command.

save terminal will write out just the terminal status, without the comment marker in front of it. This is
mainly useful for switching the terminal setting for a short while, and getting back to the previously set
terminal, afterwards, by loading the saved terminal status. Note that for a single gnuplot session you may
rather use the other method of saving and restoring current terminal by the commands set term push and
set term pop, see set term (p. 232).

save variables writes all user variables but not datablocks and not internal variables GPVAL_* GPFUN_*
MOUSE_* ARG*.

save fit saves only the variables used in the most recent fit command. The saved file may be used as a
parameter file to initialize future fit commands using the via keyword.

The filename must be enclosed in quotes.

The special filename "-" may be used to save commands to standard output. On systems which support
a popen function (Unix), the output of save can be piped through an external program by starting the
file name with a ’|’. This provides a consistent interface to gnuplot’s internal settings to programs which
communicate with gnuplot through a pipe. Please see help for batch/interactive (p. 35) for more details.

Examples:

save ’work.gnu’

save functions ’func.dat’

save var ’state.dat’; save datablocks ’state.dat’ append
save set ’options.dat’

save term ’myterm.gnu’

save ’-’

save ’|grep title >t.gp’

Set-show

The set command can be used to set lots of options. No new graph is drawn, however, until a plot, splot,
or replot command is given.

For most options the corresponding show command reports the current setting. A few show commands
like show palette and show colornames are documented separately.

Options changed using set can be returned to the default state by giving the corresponding unset command.
See also the reset (p. 152) command, which returns all settable parameters to default values.

The set and unset commands may optionally contain an iteration clause. See plot for (p. 145).

Angles

By default, gnuplot assumes the independent variable in polar graphs is in units of radians. If set angles
degrees is specified before set polar, then the default range is [0:360] and the independent variable has
units of degrees. This is particularly useful for plots of data files. The angle setting also applies to 3D
mapping as set via the set mapping command.

Syntax:

set angles {degrees | radians}
show angles

The angle specified in set grid polar is also read and displayed in the units specified by set angles.

154 gnuplot 5.5

set angles also affects the arguments of the machine-defined functions sin(x), cos(x) and tan(x), and the
outputs of asin(x), acos(x), atan(x), atan2(x), and arg(x). It has no effect on the arguments of hyperbolic
functions or Bessel functions. However, the output arguments of inverse hyperbolic functions of complex
arguments are affected; if these functions are used, set angles radians must be in effect to maintain
consistency between input and output arguments.

x={1.0,0.1}

set angles radians

y=sinh(x)

print y #prints {1.16933, 0.154051}

print asinh(y) #prints {1.0, 0.1}

but
set angles degrees
y=sinh(x)
print y #prints {1.16933, 0.154051}

print asinh(y) #prints {57.29578, 5.729578}

See also poldat.dem: polar plot using set angles demo.

Arrow

Arbitrary arrows can be placed on a plot using the set arrow command.
Syntax:

set arrow {<tag>} from <position> to <position>
set arrow {<tag>} from <position> rto <position>
set arrow {<tag>} from <position> length <coord> angle <ang>
set arrow <tag> arrowstyle | as <arrow_style>
set arrow <tag> {nohead | head | backhead | heads}
{size <headlength>,<headangle>{,<backangle>}} {fixed}
{filled | empty | nofilled | noborder}
{front | back}
{linestyle | 1ls <line_style>}
{linetype | 1t <line_type>}
{linewidth | 1w <line_width>}
{linecolor | 1lc <colorspec>}
{dashtype | dt <dashtype>}

unset arrow {<tag>}
show arrow {<tag>}

<tag> is an integer that identifies the arrow. If no tag is given, the lowest unused tag value is assigned
automatically. The tag can be used to delete or change a specific arrow. To change any attribute of an
existing arrow, use set arrow with the appropriate tag and specify the attributes to be changed.

The position of the first end point of the arrow is always specified by "from". The other end point can
be specified using any of three different mechanisms. The <position>s are specified by either x,y or x,y,z,
and may be preceded by first, second, graph, screen, or character to select the coordinate system.
Unspecified coordinates default to 0. See coordinates (p. 37) for details. A coordinate system specifier
does not carry over from the first endpoint description the second.

1) "to <position>" specifies the absolute coordinates of the other end.

2) "rto <position>" specifies an offset to the "from" position. For linear axes, graph and screen coordinates,
the distance between the start and the end point corresponds to the given relative coordinate. For logarithmic

http://www.gnuplot.info/demo/poldat.html

gnuplot 5.5 155

axes, the relative given coordinate corresponds to the factor of the coordinate between start and end point.
Thus, a negative relative value or zero are not allowed for logarithmic axes.

3) "length <coordinate> angle <angle>" specifies the orientation of the arrow in the plane of the graph.
Again any of the coordinate systems can be used to specify the length. The angle is always in degrees.

Other characteristics of the arrow can either be specified as a pre-defined arrow style or by providing them
in set arrow command. For a detailed explanation of arrow characteristics, see arrowstyle (p. 223).

Examples:

To set an arrow pointing from the origin to (1,2) with user-defined linestyle 5, use:
set arrow to 1,2 1s 5

To set an arrow from bottom left of plotting area to (-5,5,3), and tag the arrow number 3, use:
set arrow 3 from graph 0,0 to -5,5,3

To change the preceding arrow to end at 1,1,1, without an arrow head and double its width, use:
set arrow 3 to 1,1,1 nohead 1lw 2

To draw a vertical line from the bottom to the top of the graph at x=3, use:
set arrow from 3, graph O to 3, graph 1 nohead

To draw a vertical arrow with T-shape ends, use:
set arrow 3 from 0,-5 to 0,5 heads size screen 0.1,90

To draw an arrow relatively to the start point, where the relative distances are given in graph coordinates,
use:

set arrow from 0,-5 rto graph 0.1,0.1

To draw an arrow with relative end point in logarithmic x axis, use:

set logscale x
set arrow from 100,-5 rto 10,10

This draws an arrow from 100,-5 to 1000,5. For the logarithmic x axis, the relative coordinate 10 means
"factor 10" while for the linear y axis, the relative coordinate 10 means "difference 10".
To delete arrow number 2, use:

unset arrow 2

To delete all arrows, use:
unset arrow

To show all arrows (in tag order), use:
show arrow

arrows demos.

Autoscale

Autoscaling may be set individually on the x, y or z axis or globally on all axes. The default is to autoscale
all axes. If you want to autoscale based on a subset of the plots in the figure, you can mark the ones to be
omitted with the flag noautoscale in the plot command. See datafile (p. 129).

Syntax:
set autoscale {<axis>{|min|max|fixmin|fixmax|fix} | fix | keepfix}
set autoscale noextend
unset autoscale {<axis>}
show autoscale

http://www.gnuplot.info/demo/arrowstyle.html

156 gnuplot 5.5

where <axis> is x, y, z, cb, x2, y2, Xy, or paxis <p>. Appending min or max to the axis name tells
gnuplot to autoscale only the minimum or maximum of that axis.

If no axis name is given, all axes are autoscaled.

Autoscaling the independent axes (x for plot and x,y for splot) adjusts the axis range to match the data
being plotted. If the plot contains only functions (no input data), autoscaling these axes has no effect.

Autoscaling the dependent axis (y for a plot and z for splot) adjusts the axis range to match the data or
function being plotted.

Adjustment of the axis range includes extending it to the next tic mark; i.e. unless the extreme data
coordinate exactly matches a tic mark, there will be some blank space between the data and the plot border.
Addition of this extra space can be suppressed by noextend. It can be further increased by the command
set offset. Please see set xrange (p. 243) and set offsets (p. 204) for additional information.

The behavior of autoscaling remains consistent in parametric mode, (see set parametric (p. 211)). How-
ever, there are more dependent variables and hence more control over x, y, and z axis scales. In parametric
mode, the independent or dummy variable is t for plots and u,v for splots. autoscale in parametric mode,
then, controls all ranges (t, u, v, x, y, and z) and allows x, y, and z to be fully autoscaled.

When tics are displayed on second axes but no plot has been specified for those axes, x2range and y2range
are inherited from xrange and yrange. This is done before applying offsets or autoextending the ranges to
a whole number of tics, which can cause unexpected results. To prevent this you can explicitly link the
secondary axis range to the primary axis range. See set link (p. 190).

Noextend
set autoscale noextend

By default autoscaling sets the axis range limits to the nearest tic label position that includes all the plot
data. Keywords fixmin, fixmax, fix or noextend tell gnuplot to disable extension of the axis range to the
next tic mark position. In this case the axis range limit exactly matches the coordinate of the most extreme
data point. set autoscale noextend is a synonym for set autoscale fix. Range extension for a single axis
can be disabled by appending the noextend keyword to the corresponding range command, e.g.

set yrange [0:*] noextend

set autoscale keepfix autoscales all axes while leaving the fix settings unchanged.

Examples

Examples:
This sets autoscaling of the y axis (other axes are not affected):

set autoscale y

This sets autoscaling only for the minimum of the y axis (the maximum of the y axis and the other axes are
not affected):

set autoscale ymin

This disables extension of the x2 axis tics to the next tic mark, thus keeping the exact range as found in the
plotted data and functions:

set autoscale x2fixmin
set autoscale x2fixmax

This sets autoscaling of the x and y axes:

set autoscale xy

This sets autoscaling of the x, y, z, x2 and y2 axes:

gnuplot 5.5 157

set autoscale

This disables autoscaling of the x, y, z, x2 and y2 axes:

unset autoscale

This disables autoscaling of the z axis only:

unset autoscale z

Polar mode

When in polar mode (set polar), the xrange and the yrange may be left in autoscale mode. If set rrange
is used to limit the extent of the polar axis, then xrange and yrange will adjust to match this automatically.
However, explicit xrange and yrange commands can later be used to make further adjustments. See set
rrange (p. 221).

See also polar demos.

Bind

show bind shows the current state of all hotkey bindings. See bind (p. 66).

Bmargin

The command set bmargin sets the size of the bottom margin. Please see set margin (p. 193) for details.

Border

The set border and unset border commands control the display of the graph borders for the plot and
splot commands. Note that the borders do not necessarily coincide with the axes; with plot they often do,
but with splot they usually do not.

Syntax:

set border {<integer>}
{front | back | behind}
{linestyle | 1ls <line_style>}
{linetype | 1t <line_type>} {linewidth | lw <line_width>}
{linecolor | 1lc <colorspec>} {dashtype | dt <dashtype>}
{polar}

unset border

show border

With a splot displayed in an arbitrary orientation, like set view 56,103, the four corners of the x-y plane
can be referred to as "front", "back", "left" and "right". A similar set of four corners exist for the top surface,
of course. Thus the border connecting, say, the back and right corners of the x-y plane is the "bottom right
back" border, and the border connecting the top and bottom front corners is the "front vertical". (This
nomenclature is defined solely to allow the reader to figure out the table that follows.)

The borders are encoded in a 12-bit integer: the four low bits control the border for plot and the sides of
the base for splot; the next four bits control the verticals in splot; the four high bits control the edges on
top of an splot. The border settings is thus the sum of the appropriate entries from the following table:

http://www.gnuplot.info/demo/poldat.html

158 gnuplot 5.5

’ Graph Border Encoding ‘

Bit plot splot
1 bottom bottom left front
2 left bottom left back
4 top bottom right front
8 right bottom right back
16 | no effect left vertical
32 | no effect back vertical
64 | no effect right vertical
128 | no effect front vertical
256 | no effect top left back
512 | no effect top right back
1024 | no effect top left front
2048 | no effect top right front
4096 polar no effect

The default setting is 31, which is all four sides for plot, and base and z axis for splot.

Separate from the four vertical lines in a 3D border, the splot command by default draws a vertical line
each corner of a surface to the base plane of the plot. These verticals are not controlled by set border.
Instead use set/unset cornerpoles.

In 2D plots the border is normally drawn on top of all plots elements (front). If you want the border to be
drawn behind the plot elements, use set border back.

In hidden3d plots the lines making up the border are normally subject to the same hidden3d processing as
the plot elements. set border behind will override this default.

Using the optional <linestyle>, <linetype>, <linewidth>, <linecolor>, and <dashtype> specifiers, the way
the border lines are drawn can be influenced (limited by what the current terminal driver supports). Besides
the border itself, this line style is used for the tics, independent of whether they are plotted on the border
or on the axes (see set xtics (p. 245)).

For plot, tics may be drawn on edges other than bottom and left by enabling the second axes — see set
xtics (p. 245) for details.

If a splot draws only on the base, as is the case with "unset surface; set contour base", then the verticals
and the top are not drawn even if they are specified.

The set grid options "back’, 'front’ and ’layerdefault’ also control the order in which the border lines are
drawn with respect to the output of the plotted data.

The polar keyword enables a circular border for polar plots.
Examples:

Draw default borders:
set border

Draw only the left and bottom (plot) or both front and back bottom left (splot) borders:

set border 3

Draw a complete box around a splot:
set border 4095

Draw a topless box around a splot, omitting the front vertical:
set border 127+256+512 # or set border 1023-128

Draw only the top and right borders for a plot and label them as axes:
unset xtics; unset ytics; set x2tics; set y2tics; set border 12

gnuplot 5.5 159

Boxwidth

The set boxwidth command is used to set the default width of boxes in the boxes, boxerrorbars,
boxplot, candlesticks and histograms styles.

Syntax:

set boxwidth {<width>} {absolutel|relative}
show boxwidth

By default, adjacent boxes are extended in width until they touch each other. A different default width may
be specified using the set boxwidth command. Relative widths are interpreted as being a fraction of this
default width.

An explicit value for the boxwidth is interpreted as being a number of units along the current x axis
(absolute) unless the modifier relative is given. If the x axis is a log-scale (see set log (p. 191)) then the
value of boxwidth is truly "absolute" only at x=1; this physical width is maintained everywhere along the
axis (i.e. the boxes do not become narrower the value of x increases). If the range spanned by a log scale x
axis is far from x=1, some experimentation may be required to find a useful value of boxwidth.

The default is superseded by explicit width information taken from an extra data column in styles boxes or
boxerrorbars. See style boxes (p. 78) and style boxerrorbars (p. 78) for more details.

To set the box width to automatic use the command

set boxwidth

To set the box width to half of the automatic size use

set boxwidth 0.5 relative

To set the box width to an absolute value of 2 use

set boxwidth 2 absolute

Boxdepth
set boxdepth {<y extent>} | square

The set boxdepth command affects only 3D plots created by splot with boxes. It sets the extent of each
box along the y axis, i.e. its thickness. set boxdepth square will try to choose a y extent that gives the
appearance of a square crossection independent of the axis scales on x and y.

Color

Gnuplot assigns each element of a plot or splot command a new set of line properties taken from a predefined
sequence. The default is to distinguish successive lines by a change in color. The alternative selected by set
monochrome uses a sequence of black lines distinguished by linewidth or dot/dash pattern. The set color
command exits this alternative monochrome mode and restores the previous set of default color lines. See
set monochrome (p. 194), set linetype (p. 190), and set colorsequence (p. 160).

Colormap

Syntax:

set colormap new <colormap-name>
set colormap <colormap-name> range [<min>:<max>]
show colormaps

160 gnuplot 5.5

set colormap new <name>> creates a colormap array <name> and loads it from the current palette
settings. This saved colormap can be further manipulated as an array of 32-bit ARGB color values and used
by name in subsequent plots.

Here is an example that creates a palette running from dark red to white, saves it to a colormap array named
'Reds’, and makes all entries in the colormap partially transparent. This named colormap is then used later
to color a pm3d surface. Note that the alpha channel value in a named colormap follows the convention for
ARGB line properties; i.e 0 is opaque, 0xff is fully transparent.

set palette defined (0 "dark-red", 1 "white")

set colormap new Reds

do for [i=1:|Reds|] { Reds[i] = Reds[i] | 0x3F000000 }

splot func(x,y) with pm3d fillcolor palette Reds

The mapping of z values onto the colormap can be tuned by setting minimum and maximum z values that
correspond to the end points. For example
set colormap Reds range [0:10]

If no range is set, or if min and max are the same, then the mapping uses the current limits of cbrange. See
set cbrange (p. 253).

A colormap can be used to gradient-fill a rectangular area. See pixmap colormap (p. 213).

Colorsequence

Syntax:
set colorsequence {default|classic|podo}

set colorsequence default selects a terminal-independent repeating sequence of eight colors. See set
linetype (p. 190), colors (p. 61).

set colorsequence classic lets each separate terminal type provide its own sequence of line colors. The
number provided varies from 4 to more than 100, but most start with red/green/blue/magenta/cyan/yellow.
This was the default behaviour prior to version 5.

set colorsequence podo selects eight colors drawn from a set recommended by Wong (2011) [Nature
Methods 8:441] as being easily distinguished by color-blind viewers with either protanopia or deuteranopia.

In each case you can further customize the length of the sequence and the colors used. See set linetype
(p- 190), colors (p. 61).

Clabel

This command has been deprecated. Use set cntrlabel instead. set clabel "format" is replaced by set
cntrlabel format "format". unset clabel is replaced by set cntrlabel onecolor.

Clip

Syntax:
set clip {points|one|two|radial}
unset clip {points|onel|two|radial}
show clip

Default state:
unset clip points
set clip one
unset clip two
unset clip radial

gnuplot 5.5 161

Data points whose center lies inside the plot boundaries are normally drawn even if the finite size of the
point symbol causes it to extend past a boundary line. set clip points causes such points to be clipped (i.e.
not drawn) even though the point center is inside the boundaries of a 2D plot. Data points whose center
lies outside the plot boundaries are never drawn.

unset clip causes a line segment in a plot not to be drawn if either end of that segment lies outside the plot
boundaries (i.e. xrange and yrange).

set clip one causes gnuplot to draw the in-range portion of line segments with one endpoint in range and
one endpoint out of range. set clip two causes gnuplot to draw the in-range portion of line segments with
both endpoints out of range. Line segments that lie entirely outside the plot boundaries are never drawn.

set clip radial affects plotting only in polar mode. It clips lines against the radial bound established by
set rrange [0:MAX]. This criteria is applied in conjunction with set clip {one|two}. Le. the portion of
a line between two points with R > RMAX that passes through the circle R = RMAX is drawn only if both
clip two and clip radial are set.

Notes:

* set clip affects only points and lines produced by plot styles lines, linespoints, points, arrows, and

vectors.

* Clipping of colored quadrangles drawn for pm3d surfaces and other solid objects is controlled set pm3d
clipping. The default is smooth clipping against the current zrange.

* Object clipping is controlled by the clip or noclip property of the individual object.

* In the current version of gnuplot, "plot with vectors" in polar mode does not test or clip against the
maximum radius.

Cntrlabel

Syntax:
set cntrlabel {format "format"} {font "font"}
set cntrlabel {start <int>} {interval <int>}
set cntrlabel onecolor

set cntrlabel controls the labeling of contours, either in the key (default) or on the plot itself in the case

of splot ... with labels. In the latter case labels are placed along each contour line according to the

pointinterval or pointnumber property of the label descriptor. By default a label is placed on the 5th

line segment making up the contour line and repeated every 20th segment. These defaults are equivalent to
set cntrlabel start 5 interval 20

They can be changed either via the set cntrlabel command or by specifying the interval in the splot
command itself

set contours; splot $F00 with labels point pointinterval -1
Setting the interval to a negative value means that the label appear only once per contour line. However if
set samples or set isosamples is large then many contour lines may be created, each with a single label.

A contour label is placed in the plot key for each linetype used. By default each contour level is given its own
linetype, so a separate label appears for each. The command set cntrlabel onecolor causes all contours
to be drawn using the same linetype, so only one label appears in the plot key. This command replaces an
older command unset clabel.

Cntrparam

set cntrparam controls the generation of contours and their smoothness for a contour plot. show contour
displays current settings of cntrparam as well as contour.

Syntax:

162 gnuplot 5.5

linear
cubicspline
bspline
points <n>
order <n>
levels { <n>
| auto {<n>}
| discrete <z1> {,<z2>{,<z3>...}}
| incremental <start>, <incr> {,<end>}

set cntrparam {

—_————

}
{{un}sorted?}
{firstlinetype N}

show contour

This command has two functions. First, it sets the values of z for which contours are to be determined. The
number of contour levels <n> should be an integral constant expression. <zl>, <z2> ... are real-valued
expressions. Second, it controls the appearance of the individual contour lines.

Keywords controlling the smoothness of contour lines:

linear, cubicspline, bspline — Controls type of approximation or interpolation. If linear, then straight
line segments connect points of equal z magnitude. If cubicspline, then piecewise-linear contours are
interpolated between the same equal z points to form somewhat smoother contours, but which may undulate.
If bspline, a guaranteed-smoother curve is drawn, which only approximates the position of the points of
equal-z.

points — Eventually all drawings are done with piecewise-linear strokes. This number controls the number
of line segments used to approximate the bspline or cubicspline curve. Number of cubicspline or bspline
segments (strokes) = points * number of linear segments.

order — Order of the bspline approximation to be used. The bigger this order is, the smoother the resulting
contour. (Of course, higher order bspline curves will move further away from the original piecewise linear
data.) This option is relevant for bspline mode only. Allowed values are integers in the range from 2 (linear)
to 10.

Keywords controlling the selection of contour levels:

levels auto — This is the default. <n> specifies a nominal number of levels; the actual number will be
adjusted to give simple labels. If the surface is bounded by zmin and zmax, contours will be generated at
integer multiples of dz between zmin and zmax, where dz is 1, 2, or 5 times some power of ten (like the step
between two tic marks).

levels discrete — Contours will be generated at z = <zl1>, <z2> ... as specified; the number of discrete
levels sets the number of contour levels. In discrete mode, any set cntrparam levels <n> are ignored.

levels incremental — Contours are generated at values of z beginning at <start> and increasing by
<increment>, until the number of contours is reached. <end> is used to determine the number of contour
levels, which will be changed by any subsequent set cntrparam levels <n>. If the z axis is logarithmic,
<increment> will be interpreted as a multiplicative factor, as it is for set ztics, and <end> should not be
used.

Keywords controlling the assignment of linetype to contours:

By default the contours are generated in the reverse order specified (unsorted). Thus set cntrparam
levels increment 0, 10, 100 will create 11 contours levels starting with 100 and ending with 0. Adding
the keyword sorted re-orders the contours by increasing numerical value, which in this case would mean the
first contour is drawn at 0.

By default contours are drawn using successive linetypes starting with the next linetype after that used for

gnuplot 5.5 163

the corresponding surface. Thus splot x*y It 5 would use 1t 6 for the first contour generated. If hidden3d
mode is active then each surface uses two linetypes. In this case using default settings would cause the
first contour to use the same linetype as the hidden surface, which is undesirable. This can be avoided in
either of two ways. (1) Use set hidden3d offset N to change the linetype used for the hidden surface. A
good choice would be offset -1 since that will avoid all the contour linetypes. (2) Use the set cntrparam
firstlinetype N option to specify a block of linetypes used for contour lines independent of whatever was
used for the surface. This is particularly useful if you want to customize the set of contour linetypes. N <=
0 restores the default.

If the command set cntrparam is given without any arguments specified all options are reset to the default:

set cntrparam order 4 points 5
set cntrparam levels auto 5 unsorted
set cntrparam firstlinetype O

Examples

Examples:

set cntrparam bspline
set cntrparam points 7
set cntrparam order 10

To select levels automatically, 5 if the level increment criteria are met:

set cntrparam levels auto 5

To specify discrete levels at .1, .37, and .9:

set cntrparam levels discrete .1,1/exp(1),.9

To specify levels from 0 to 4 with increment 1:

set cntrparam levels incremental 0,1,4

To set the number of levels to 10 (changing an incremental end or possibly the number of auto levels):

set cntrparam levels 10

To set the start and increment while retaining the number of levels:

set cntrparam levels incremental 100,50

To define and use a customized block of contour linetypes

set linetype 100 1lc "red" dt ’....°
do for [L=101:199] {
if (L%10 == 0) {
set linetype L lc "black" dt solid 1lw 2
} else {
set linetype L 1lc "gray" dt solid 1w 1
by
}
set cntrparam firstlinetype 100
set cntrparam sorted levels incremental 0, 1, 100

See also set contour (p. 165) for control of where the contours are drawn, and set cntrlabel (p. 161)
for control of the format of the contour labels and linetypes.
See also contours demo (contours.dem)

and contours with user defined levels demo (discrete.dem).

http://www.gnuplot.info/demo/contours.html
http://www.gnuplot.info/demo/discrete.html

164 gnuplot 5.5

Color box

The color scheme, i.e. the gradient of the smooth color with min_z and max_z values of pm3d’s palette, is
drawn in a color box unless unset colorbox.

set colorbox
set colorbox {
{ vertical | horizontal } {{no}invert}
default | user }
origin x, y }
size x, y }
front | back }
noborder | bdefault | border <linestyle> } {cbtics <linestyle>}

N N

}
show colorbox
unset colorbox

Color box position can be default or user. If the latter is specified the values as given with the origin and
size subcommands are used. The box can be drawn after (front) or before (back) the graph or the surface.

The orientation of the color gradient can be switched by options vertical and horizontal.

origin x, y and size x, y are used only in combination with the user option. The x and y values are
interpreted as screen coordinates by default, and this is the only legal option for 3D plots. 2D plots,
including splot with set view map, allow any coordinate system to be specified. Try for example:

set colorbox horiz user origin .1,.02 size .8,.04

which will draw a horizontal gradient somewhere at the bottom of the graph.

border turns the border on (this is the default). noborder turns the border off. If an positive integer
argument is given after border, it is used as a line style tag which is used for drawing the border, e.g.:

set style line 2604 linetype -1 linewidth .4
set colorbox border 2604

will use line style 2604, a thin line with the default border color (-1) for drawing the border. bdefault
(which is the default) will use the default border line style for drawing the border of the color box.

cbtics allows you to specify a line style for the colorbox tics (cbtics) different from the line style of the
border.

The axis of the color box is called cb and it is controlled by means of the usual axes commands, i.e.
set /unset/show with cbrange, [m]cbtics, format cb, grid [m]cb, cblabel, and perhaps even cbdata,
[no]cbdtics, [no]cbmtics.

set colorbox without any parameter switches the position to default. unset colorbox resets the default
parameters for the colorbox and switches the colorbox off.

See also help for set pm3d (p. 213), set palette (p. 206), and set style line (p. 227).

Colornames

gnuplot 5.5 165

Gnuplot knows a limited number of color names. You “:WI =ig(p‘q“ :“L]kmhn i)ll“l
can use these to define the color range spanned by a — :Zjﬂ:’t;;gﬁ'f,‘w lii‘y‘ ‘ =]y‘u|
pm3d palette, to assign a named color to a particular I _Elylo(&'yo) i‘t’itz —:5”
linetype or linestyle, or to define a gradient for the cur- =t Eggﬁ EE% _igil‘fk _ky.,.‘l‘
rent color palette. Use the command show colornames . Eﬁ Eggjﬁi i LHZIJI
to list the known color names together with their RGB — i EgZﬁ Egggﬁi E.;u'h."’ _l':‘”
component definitions. Examples: — i gggg&iﬁ%‘”‘““’ :‘:M =31lL'
set style line 1 linecolor "sea-green" — i o _:'“w

set palette defined (0 "dark-red", 1 "white")
print sprintf("0x%06x", rgbcolor("dark-green"))
0x006400

Contour

set contour enables contour drawing for surfaces. This option is available for splot only. It requires grid
data, see grid_data (p. 260) for more details. If contours are desired from non-grid data, set dgrid3d can
be used to create an appropriate grid.

Syntax:
set contour {base | surface | both}
unset contour
show contour

The three options specify where to draw the contours: base draws the contours on the grid base where the
x/ytics are placed, surface draws the contours on the surfaces themselves, and both draws the contours on
both the base and the surface. If no option is provided, the default is base.

See also set cntrparam (p. 161) for the parameters that affect the drawing of contours, and set cntrlabel
(p. 161) for control of labeling of the contours.

The surface can be switched off (see unset surface (p. 231)), giving a contour-only graph. Though it is
possible to use set size to enlarge the plot to fill the screen, more control over the output format can be
obtained by writing the contour information to a datablock, and rereading it as a 2D datafile plot:

unset surface

set contour

set cntrparam

set table $datablock

splot

unset table

contour info now in $datablock
set term <whatever>

plot $datablock

In order to draw contours, the data should be organized as "grid data". In such a file all the points for a
single y-isoline are listed, then all the points for the next y-isoline, and so on. A single blank line (a line
containing no characters other than blank spaces and a carriage return and/or a line feed) separates one
y-isoline from the next.

While set contour is in effect, splot with <style> will place the style elements (points, lines, impulses,
labels, etc) along the contour lines. with pm3d will produce a pm3d surface and also contour lines. If you
want to mix other plot elements, say labels read from a file, with the contours generated while set contour
is active you must append the keyword nocontours after that clause in the splot command.

See also splot datafile (p. 256).
See also contours demo (contours.dem)

and contours with user defined levels demo (discrete.dem).

http://www.gnuplot.info/demo/contours.html
http://www.gnuplot.info/demo/discrete.html

166 gnuplot 5.5

Cornerpoles

By default splot draws a vertical line from each corner of a 3D surface to the base plane. These vertical lines
can be suppressed using unset cornerpoles.

Dashtype

The set dashtype command allows you to define a dash pattern that can then be referred to by its index.
This is purely a convenience, as anywhere that would accept the dashtype by its numerical index would also
accept an explicit dash pattern. Example:

set dashtype 5 (2,4,2,6) # define or redefine dashtype number 5

plot f1(x) dt 5 # plot using the new dashtype

plot f1(x) dt (2,4,2,6) # exactly the same plot as above

set linetype 5 dt 5 # always use this dash pattern with linetype 5
set dashtype 66 "..-" # define a new dashtype using a string

See also dashtype (p. 64).

Datatfile

The set datafile command options control interpretation of fields read from input data files by the plot,
splot, and fit commands. Several options are currently implemented.

Set datafile columnheaders

The set datafile columnheaders command guarantees that the first row of input will be interpreted as
column headers rather than as data values. It affects all input data sources to plot, splot, fit, and stats
commands. If this setting is disabled by unset datafile columnheaders, the same effect is triggered on a
per-file basis if there is an explicit columnheader() function in a using specifier or plot title associated with
that file. See also set key autotitle (p. 184) and columnheader (p. 146).

Set datafile fortran

The set datafile fortran command enables a special check for values in the input file expressed as Fortran
D or Q constants. This extra check slows down the input process, and should only be selected if you do
in fact have datafiles containing Fortran D or Q constants. The option can be disabled again using unset
datafile fortran.

Set datafile nofpe_trap

The set datafile nofpe_trap command tells gnuplot not to re-initialize a floating point exception handler
before every expression evaluation used while reading data from an input file. This can significantly speed
data input from very large files at the risk of program termination if a floating-point exception is generated.

Set datafile missing

Syntax:

set datafile missing "<string>"
set datafile missing NaN

show datafile missing

unset datafile

gnuplot 5.5 167

The set datafile missing command tells gnuplot there is a special string used in input data files to denote
a missing data entry. There is no default character for missing. Gnuplot makes a distinction between
missing data and invalid data (e.g. "NaN", 1/0.). For example invalid data causes a gap in a line drawn
through sequential data points; missing data does not.

Non-numeric characters found in a numeric field will usually be interpreted as invalid rather than as a missing
data point unless they happen to match the missing string.

Conversely set datafile missing NaN causes all data or expressions evaluating to not-a-number (NaN) to
be treated as missing data.

The example below shows differences between gnuplot version 4 and version 5.

Example:) .
set style data linespoints Version version®
plot ’-’ title "(a)" 0T @ 0@
110 40 40
5 20 30 - 30 -
37 20 - 20 -
4 40 10 - 10 -
5 50 00 1 2 3 4 5 6 00 1 2 3 4 5 6
e
set datafile missing "7" 50 [~ (b) 50 |- (b)
plot ’-’ title "(b)" 40 + 40 +
110 30 - 30 -
2 20 20 - 20 -
37 10 - 10 -
4 40 0 TR — 0 TR —
5 50 01 2 3 4 5 6 0 1 2 3 4 5 6
e
plot ’-’ using 1:2 title "(c)" 0rE 0ro ./.
1 10 40 40 -
30 - 30 -
4 40 10 - 10 -
5 50 00 1 2 3 4 5 6 00 1 2 3 4 5 6
e
plot ’-’ using 1:($2) title "(d)" 50 1 (d) ./0 50 1 (d) ./0
1 10 40 - 40
2 20 30 - 30 -
3 NaN 20 |- 20 |-
440 10 - /. 10 /.
5 50 0 1 1 1 1 1 0 1 1 1 1 1
o 01 2 3 4 5 6 01 2 3 4 5 6

Plot (a) differs in gnuplot 4 and gnuplot 5 because the third line contains only one valid number. Version 4
switched to a single-datum-on-a-line convention that the line number is "x" and the datum is "y", erroneously
placing the point at(2,3).

Both the old and new gnuplot versions handle the same data correctly if the '?’ character is designated as
a marker for missing data (b).

Old gnuplot versions handled NaN differently depending of the form of the using clause, as shown in plots
(¢) and (d). Gnuplot now handles NaN the same whether the input column was specified as N or ($N). See
also the imageNaN demo.

Starting with version 5.4, gnuplot notices a missing value flag in column N when the using specifier in a plot
command directly refers to the column as using N, using ($N), or using (function($N)). In these cases

http://www.gnuplot.info/demo/mgr.html

168 gnuplot 5.5

of direct reference the expression, e.g. func($N), is not evaluated at all. This is to forestall floating point
errors or other side effects that would cause the program to stop with an error.

The current gnuplot version also notices direct references of the form (column(N)), and it notices during
evaluation if the expression depends even indirectly on a column value flagged "missing".

In all these cases the program treats the entire input data line as if it were not present at all. However if
an expression depends on a data value that is truly missing (e.g. an empty field in a csv file) it may not
be caught by these checks. If it evaluates to NaN it will be treated as invalid data rather than as a missing
data point. If you want to treat such invalid data the same as missing data, use the command set datafile
missing NalN.

Set datafile separator

The command set datafile separator tells gnuplot that data fields in subsequent input files are separated
by a specific character rather than by whitespace. The most common use is to read in csv (comma-separated
value) files written by spreadsheet or database programs. By default data fields are separated by whitespace.

Syntax:

set datafile separator {whitespace | tab | comma | "<chars>"}

Examples:

Input file contains tab-separated fields
set datafile separator "\t"

Input file contains comma-separated values fields
set datafile separator comma

Input file contains fields separated by either * or |
set datafile separator "x*|"

Set datafile commentschars

The command set datafile commentschars specifies what characters can be used in a data file to begin
comment lines. If the first non-blank character on a line is one of these characters then the rest of the data
line is ignored. Default value of the string is "#!" on VMS and "#" otherwise.

Syntax:

set datafile commentschars {"<string>"}
show datafile commentschars
unset commentschars

Then, the following line in a data file is completely ignored

#1234

but the following
1#34

will be interpreted as garbage in the 2nd column followed by valid data in the 3rd and 4th columns.
Example:

set datafile commentschars "#!J"

gnuplot 5.5 169

Set datafile binary

The set datafile binary command is used to set the defaults when reading binary data files. The syntax
matches precisely that used for commands plot and splot. See binary matrix (p. 257) and binary
general (p. 126) for details about the keywords that can be present in <binary list>.

Syntax:
set datafile binary <binary list>
show datafile binary
show datafile
unset datafile

Examples:
set datafile binary filetype=auto
set datafile binary array=(512,512) format="%uchar"

show datafile binary # list current settings

Decimalsign

The set decimalsign command selects a decimal sign for numbers printed into tic labels or set label
strings.

Syntax:
set decimalsign {<value> | locale {"<locale>"}}
unset decimalsign
show decimalsign

The argument <value> is a string to be used in place of the usual decimal point. Typical choices include
the period, ’.’; and the comma, ’,’; but others may be useful, too. If you omit the <value> argument, the
decimal separator is not modified from the usual default, which is a period. Unsetting decimalsign has the
same effect as omitting <value>.

Example:

Correct typesetting in most European countries requires:
set decimalsign ’,°’

Please note: If you set an explicit string, this affects only numbers that are printed using gnuplot’s gprintf()
formatting routine, including axis tics. It does not affect the format expected for input data, and it does
not affect numbers printed with the sprintf() formatting routine. To change the behavior of both input and
output formatting, instead use the form

set decimalsign locale

This instructs the program to use both input and output formats in accordance with the current setting of
the LC_ALL, LC_.NUMERIC, or LANG environmental variables.

set decimalsign locale "foo"

This instructs the program to format all input and output in accordance with locale "foo", which must
be installed. If locale "foo" is not found then an error message is printed and the decimal sign setting is
unchanged. On linux systems you can get a list of the locales installed on your machine by typing "locale
-a". A typical linux locale string is of the form "sl_ SLUTF-8". A typical Windows locale string is of the
form "Slovenian_Slovenia.1250" or "slovenian". Please note that interpretation of the locale settings is done
by the C library at runtime. Older C libraries may offer only partial support for locale settings such as the
thousands grouping separator character.

set decimalsign locale; set decimalsign "."

This sets all input and output to use whatever decimal sign is correct for the current locale, but over-rides
this with an explicit ’.” in numbers formatted using gnuplot’s internal gprintf() function.

170 gnuplot 5.5

Dgrid3d

The set dgrid3d command enables and sets parameters for mapping non-grid data onto a grid. See splot
grid_data (p. 260) for details about the grid data structure. Aside from its use in fitting 3D surfaces, this
process can also be used to generate 2D heatmaps, where the 'z’ value of each point contributes to a local
weighted value.

Syntax:
set dgrid3d {<rows>} {,{<cols>}} splines
set dgrid3d {<rows>} {,{<cols>}} gnorm {<norm>}
set dgrid3d {<rows>} {,{<cols>}} {gauss | cauchy | exp | box | hann}
{kdensity} {<dx>} {,<dy>}
unset dgrid3d
show dgrid3d

By default dgrid3d is disabled. When enabled, 3D data read from a file are always treated as a scattered
data set. A grid with dimensions derived from a bounding box of the scattered data and size as specified by
the row/col_size parameters is created for plotting and contouring. The grid is equally spaced in x (rows)
and in y (columns); the z values are computed as weighted averages or spline interpolations of the scattered
points’ z values. In other words, a regularly spaced grid is created and then a smooth approximation to the
raw data is evaluated for each grid point. This approximation is plotted in place of the raw data.

The number of columns defaults to the number of rows, which defaults to 10.

Several algorithms are available to calculate the approximation from the raw data. Some of these algorithms
can take additional parameters. These interpolations are such that the closer the data point is to a grid
point, the more effect it has on that grid point.

The splines algorithm calculates an interpolation based on thin plate splines. It does not take additional
parameters.

The gnorm algorithm calculates a weighted average of the input data at each grid point. Each data point
is weighted by the inverse of its distance from the grid point raised to some power. The power is specified
as an optional integer parameter that defaults to 1. This algorithm is the default.

Finally, several smoothing kernels are available to calculate weighted averages: z = Sum. w(d.i) * zi /

Sum_i w(d-i), where z_i is the value of the i-th data point and d_i is the distance between the current grid
point and the location of the i-th data point. All kernels assign higher weights to data points that are close
to the current grid point and lower weights to data points further away.

The following kernels are available:

gauss : w(d) = exp(-dx*d)
cauchy : w(d) = 1/(1 + dxd)
exp : w(d) = exp(-d)
box : w(d) =1 if d<1
=0 otherwise
hann : w(d) = 0.5%(1+cos(pix*d)) if d<1
w(d) =0 otherwise

When using one of these five smoothing kernels, up to two additional numerical parameters can be specified:
dx and dy. These are used to rescale the coordinate differences when calculating the distance: d_i = sqrt(
((x-x1)/dx)**2 + ((y-y-)/dy)**2), where x,y are the coordinates of the current grid point and x_i,y i are
the coordinates of the i-th data point. The value of dy defaults to the value of dx, which defaults to 1. The
parameters dx and dy make it possible to control the radius over which data points contribute to a grid
point IN THE UNITS OF THE DATA ITSELF.

The optional keyword kdensity, which must come after the name of the kernel, but before the optional scale
parameters, modifies the algorithm so that the values calculated for the grid points are not divided by the
sum of the weights (z = Sum-i w(d) * z_i). If all z_i are constant, this effectively plots a bivariate kernel
density estimate: a kernel function (one of the five defined above) is placed at each data point, the sum of

gnuplot 5.5 171

these kernels is evaluated at every grid point, and this smooth surface is plotted instead of the original data.
This is similar in principle to what the smooth kdensity option does to 1D datasets. See kdensity2d.dem
and heatmap_points.dem for usage example.

The dgrid3d option is a simple scheme which replaces scattered data with weighted averages on a regular
grid. More sophisticated approaches to this problem exist and should be used to preprocess the data outside
gnuplot if this simple solution is found inadequate.

See also the online demos for dgrid3d
scatter

and heatmap_points

Dummy

The set dummy (p. 171) command changes the default dummy variable names.

Syntax:

set dummy {<dummy-var>} {,<dummy-var>}
show dummy

By default, gnuplot assumes that the independent, or "dummy", variable for the plot command is "t" if
in parametric or polar mode, or "x" otherwise. Similarly the independent variables for the splot command
are "u" and "v" in parametric mode (splot cannot be used in polar mode), or "x" and "y" otherwise.

It may be more convenient to call a dummy variable by a more physically meaningful or conventional name.
For example, when plotting time functions:

set dummy t
plot sin(t), cos(t)

Examples:

set dummy u,v
set dummy ,s

The second example sets the second variable to s. To reset the dummy variable names to their default values,
use

unset dummy

Encoding

The set encoding command selects a character encoding.

Syntax:

set encoding {<value>}
set encoding locale
show encoding

Valid values are

default - tells a terminal to use its default encoding

is0_8859_1 - the most common Western European encoding prior to UTF-8.
Known in the PostScript world as ’ISO-Latinl’.

is0_8859_15 - a variant of is0_8859_1 that includes the Euro symbol

is0_8859_2 - used in Central and Eastern Europe

is0_8859_9 - used in Turkey (also known as Latinb)

koi8r - popular Unix cyrillic encoding

http://www.gnuplot.info/demo/dgrid3d.html
http://www.gnuplot.info/demo/scatter.html
http://www.gnuplot.info/demo/heatmap_points.html

172 gnuplot 5.5

koi8u - Ukrainian Unix cyrillic encoding

cp437 - codepage for MS-DOS

cp850 - codepage for 0S/2, Western Europe

cp852 - codepage for 0S/2, Central and Eastern Europe

cp950 - MS version of Bigh (emf terminal only)

cpl1250 - codepage for MS Windows, Central and Eastern Europe
cpl251 - codepage for 8-bit Russian, Serbian, Bulgarian, Macedonian
cpl252 - codepage for MS Windows, Western Europe

cpl254 - codepage for MS Windows, Turkish (superset of Latinb)
sjis - shift-JIS Japanese encoding

utf8 - variable-length (multibyte) representation of Unicode

entry point for each character

The command set encoding locale is different from the other options. It attempts to determine the current
locale from the runtime environment. On most systems this is controlled by the environmental variables
LC_ALL, LC_.CTYPE, or LANG. This mechanism is necessary, for example, to pass multibyte character
encodings such as UTF-8 or EUC_JP to the wxt and pdf terminals. This command does not affect the
locale-specific representation of dates or numbers. See also set locale (p. 191) and set decimalsign
(p. 169).

Generally you should set the encoding before setting the terminal type, as it may affect the selection of fonts.

Errorbars

The set errorbars command controls the tics at the ends of error bars, and also at the end of the whiskers
belonging to a boxplot.

Syntax:
set errorbars {small | large | fullwidth | <size>} {front | back}
{line-properties}
unset errorbars
show errorbars

small is a synonym for 0.0 (no crossbar), and large for 1.0. The default is 1.0 if no size is given.

The keyword fullwidth is relevant only to boxplots and to histograms with errorbars. It sets the width of
the errorbar ends to be the same as the width of the associated box. It does not change the width of the
box itself.

The front and back keywords are relevant only to errorbars attached to filled rectangles (boxes, candlesticks,
histograms).

Error bars are by default drawn using the same line properties as the border of the associated box. You can
change this by providing a separate set of line properties for the error bars.

set errorbars linecolor black linewidth 0.5 dashtype ’.’

Fit
The set fit command controls the options for the fit command.

Syntax:

set fit {nolog | logfile {"<filename>"|defaultl}}
{{no}quiet|results|brief |verbose}
{{no}errorvariables}
{{no}covariancevariables}
{{no}errorscaling?}

gnuplot 5.5 173

{{no}prescale}
{maxiter <value>|default}
{1imit <epsilon>|default}
{1imit_abs <epsilon_abs>}
{start-lambda <value>|default}
{lambda-factor <value>|default}
{script {"<command>"|default}}
{vd | v5}

unset fit

show fit

The logfile option defines where the fit command writes its output. The <filename> argument must be
enclosed in single or double quotes. If no filename is given or unset fit is used the log file is reset to its
default value "fit.log" or the value of the environmental variable FIT_LOG. If the given logfile name ends
with a / or \, it is interpreted to be a directory name, and the actual filename will be "fit.log" in that
directory.

By default the information written to the log file is also echoed to the terminal session. set fit quiet turns
off the echo, whereas results prints only final results. brief gives one line summaries for every iteration of
the fit in addition. verbose yields detailed iteration reports as in version 4.

If the errorvariables option is turned on, the error of each fitted parameter computed by fit will be copied
to a user-defined variable whose name is formed by appending "_err" to the name of the parameter itself.
This is useful mainly to put the parameter and its error onto a plot of the data and the fitted function, for
reference, as in:

set fit errorvariables

fit £f(x) ’datafile’ using 1:2 via a, b

print "error of a is:", a_err

set label 1 sprintf("a=Y6.2f +/- %6.2f", a, a_err)
plot ’datafile’ using 1:2, f(x)

If the errorscaling option is specified, which is the default, the calculated parameter errors are scaled
with the reduced chi square. This is equivalent to providing data errors equal to the calculated standard
deviation of the fit (FIT_STDFIT) resulting in a reduced chi square of one. With the noerrorscaling option
the estimated errors are the unscaled standard deviations of the fit parameters. If no weights are specified
for the data, parameter errors are always scaled.

If the prescale option is turned on, parameters are prescaled by their initial values before being passed to
the Marquardt-Levenberg routine. This helps tremendously if there are parameters that differ in size by
many orders of magnitude. Fit parameters with an initial value of exactly zero are never prescaled.

The maximum number of iterations may be limited with the maxiter option. A value of 0 or default means
that there is no limit.

The limit option can be used to change the default epsilon limit (le-5) to detect convergence. When the
sum of squared residuals changes by a factor less than this number (epsilon), the fit is considered to have
‘converged’. The limit_abs option imposes an additional absolute limit in the change of the sum of squared
residuals and defaults to zero.

If you need even more control about the algorithm, and know the Marquardt-Levenberg algorithm well,
the following options can be used to influence it. The startup value of lambda is normally calculated
automatically from the ML-matrix, but if you want to, you may provide your own using the start_lambda
option. Setting it to default will re-enable the automatic selection. The option lambda_factor sets the
factor by which lambda is increased or decreased whenever the chi-squared target function increased or
decreased significantly. Setting it to default re-enables the default factor of 10.0.

The script option may be used to specify a gnuplot command to be executed when a fit is interrupted
— see fit (p. 110). This setting takes precedence over the default of replot and the environment variable
FIT_SCRIPT.

174 gnuplot 5.5

If the covariancevariables option is turned on, the covariances between final parameters will be saved
to user-defined variables. The variable name for a certain parameter combination is formed by prepending
"FIT_COV_" to the name of the first parameter and combining the two parameter names by "_". For
example given the parameters "a" and "b" the covariance variable is named "FIT_COV_a_b".

In version 5 the syntax of the fit command changed and it now defaults to unitweights if no ’error’ keyword
is given. The v4 option restores the default behavior of gnuplot version 4, see also fit (p. 110).

Fontpath

Syntax:
set fontpath "/directory/where/my/fonts/live"
set term postscript fontfile <filename>

[DEPRECATED in version 5.4]

The fontpath directory is relevant only for embedding fonts in postscript output produced by the postscript
terminal. It has no effect on other gnuplot terminals. If you are not embedding fonts you do not need this
command, and even if you are embedding fonts you only need it for fonts that cannot be found via the other
paths below.

Earlier versions of gnuplot tried to emulate a font manager by tracking multiple directory trees containing
fonts. This is now replaced by a search in the following places: (1) an absolute path given in the set
term postscript fontfile command (2) the current directory (3) any of the directories specified by set
loadpath (4) the directory specified by set fontpath (5) the directory provided in environmental variable
GNUPLOT_FONTPATH

Note: The search path for fonts specified by filename for the libgd terminals (png gif jpeg sixel) is controlled
by environmental variable GDFONTPATH.

Format

The format of the tic-mark labels can be set with the set format command or with the set tics format or
individual set {axis}tics format commands. For information on using an explicit format for input data
see using format (p. 140).

Syntax:
set format {<axes>} {"<format-string>"} {numeric|timedate|geographic}
show format

where <axes> is either x, y, xy, x2, y2, z, cb or nothing (which applies the format to all axes). The
following two commands are equivalent:

set format y "%.2f"

set ytics format "%.2f"

The length of the string is restricted to 100 characters. The default format is "% h", "$%h$" for LaTeX
terminals. Other formats such as "%.2f" or "%3.0em" are often desirable. "set format" with no following
string will restore the default.

If the empty string "" is given, tics will have no labels, although the tic mark will still be plotted. To
eliminate the tic marks, use unset xtics or set tics scale 0.

Newline (\n) and enhanced text markup is accepted in the format string. Use double-quotes rather than
single-quotes in this case. See also syntax (p. 73). Characters not preceded by "%" are printed verbatim.
Thus you can include spaces and labels in your format string, such as "%g m", which will put " m" after
each number. If you want "%" itself, double it: "%g %%".

See also set xtics (p. 245) for more information about tic labels, and set decimalsign (p. 169) for how to
use non-default decimal separators in numbers printed this way. See also electron demo (electron.dem) .

http://www.gnuplot.info/demo/electron.html
http://www.gnuplot.info/demo/electron.html

gnuplot 5.5 175

Gprintf

The string function gprintf("format",x) uses gnuplot’s own format specifiers, as do the gnuplot commands
set format, set timestamp, and others. These format specifiers are not the same as those used by the
standard C-language routine sprintf(). gprintf() accepts only a single variable to be formatted. Gnuplot
also provides an sprintf("format" x1,x2,...) routine if you prefer. For a list of gnuplot’s format options, see
format specifiers (p. 175).

Format specifiers

The acceptable formats (if not in time/date mode) are:

’ Tic-mark label numerical format specifiers

Format Explanation
% floating point notation
%e or %E exponential notation; an ”e” or "E” before the power
%g or %G the shorter of %e (or %E) and %f
%hor FH like %g with "x10°{%S}" or "*10"{%S}" instead of "e}S"
%x or %X hex
%o or %0 octal

A" mantissa to base 10

%1 mantissa to base of current logscale

%s mantissa to base of current logscale; scientific power
%T power to base 10

%L power to base of current logscale

%S scientific power

%e character replacement for scientific power

b mantissa of ISO/IEC 80000 notation (ki, Mi, Gi, Ti, Pi, Ei, Zi, Yi)
%B prefix of ISO/TEC 80000 notation (ki, Mi, Gi, Ti, Pi, Ei, Zi, Yi)
%P multiple of pi

A ’scientific’ power is one such that the exponent is a multiple of three. Character replacement of scientific
powers ("%c") has been implemented for powers in the range -18 to +18. For numbers outside of this range
the format reverts to exponential.

Other acceptable modifiers (which come after the "%" but before the format specifier) are "-", which left-
justifies the number; "+", which forces all numbers to be explicitly signed; " " (a space), which makes
positive numbers have a space in front of them where negative numbers have "-"; "#" which places a
decimal point after floats that have only zeroes following the decimal point; a positive integer, which defines
the field width; "0" (the digit, not the letter) immediately preceding the field width, which indicates that
leading zeroes are to be used instead of leading blanks; and a decimal point followed by a non-negative
integer, which defines the precision (the minimum number of digits of an integer, or the number of digits
following the decimal point of a float).

Some systems may not support all of these modifiers but may also support others; in case of doubt, check
the appropriate documentation and then experiment.

Examples:
set format y "/t"; set ytics (5,10) # "5.0" and "1.0"
set format y "Ys"; set ytics (500,1000) # "500" and "1.0"
set format y "%+-12.3f"; set ytics(12345) # "+12345.000 "
set format y "%.2t*107%+03T"; set ytic(12345)# "1.23%107+04"
set format y "%s*10"{%S}"; set ytic(12345) # "12.345%x10"{3}"
set format y "%s %cg"; set ytic(12345) # "12.345 kg"
set format y "%.0P pi"; set ytic(6.283185) # "2 pi"
set format y "%.0f%%"; set ytic(50) # "50%"

176 gnuplot 5.5

set log y 2; set format y ’%1’; set ytics (1,2,3)
#displays "1.0", "1.0" and "1.5" (since 3 is 1.5 * 271)

There are some problem cases that arise when numbers like 9.999 are printed with a format that requires
both rounding and a power.

If the data type for the axis is time/date, the format string must contain valid codes for the ’strftime’
function (outside of gnuplot, type "man strftime"). See set timefmt (p. 235) for a list of the allowed
input format codes.

Time/date specifiers

There are two groups of time format specifiers: time/date and relative time. These may be used to generate
axis tic labels or to encode time in a string. See set xtics time (p. 248), strftime (p. 45), strptime

(p- 45).

The time/date formats are

] Date Specifiers

Format Explanation

%a abbreviated name of day of the week
%A full name of day of the week

%b or %h abbreviated name of the month
%B full name of the month

%d day of the month, 01-31
%D shorthand for "%m/%d/%y" (only output)

WE shorthand for "%Y-%m-%d" (only output)
%k hour, 0-23 (one or two digits)

%H hour, 00-23 (always two digits)

Al hour, 1-12 (one or two digits)

%I hour, 01-12 (always two digits)

%3 day of the year, 001-366
%m month, 01-12
%M minute, 00-60

%p ”am” or "pm”

hr shorthand for "%I:%M:%S %p" (only output)

%R shorthand for %H:%M" (only output)

%S second, integer 00-60 on output, (double) on input
%s number of seconds since start of year 1970

%T shorthand for "%H:%M:%S" (only output)

%U week of the year (CDC/MMWR ”epi week”) (ignored on input)
%ow day of the week, 0-6 (Sunday = 0)

AUl week of the year (ISO 8601 week date) (ignored on input)

hy year, 0-99 in range 1969-2068

%Y year, 4-digit

%z timezone, [+-]hh:mm

hZ timezone name, ignored string

For more information on the %W format (ISO week of year) see tm_week (p. 50). The %U format
(CDC/MMWR epidemiological week) is similar to %W except that it uses weeks that start on Sunday
rather than Monday. Caveat: Both the %W and the %U formats were unreliable in gnuplot versions prior
to 5.4.2. See unit test "week_date.dem".

The relative time formats express the length of a time interval on either side of a zero time point. The
relative time formats are

gnuplot 5.5 177

’ Time Specifiers ‘

Format Explanation
%tD +/- days relative to time=0
%tH +/- hours relative to time=0 (does not wrap at 24)
%M +/- minutes relative to time=0
AR +/- seconds associated with previous tH or tM field

Numerical formats may be preceded by a "0" ("zero") to pad the field with leading zeroes, and preceded by
a positive digit to define the minimum field width. The %S, and %t formats also accept a precision specifier
so that fractional hours/minutes/seconds can be written.

Examples Examples of date format:

Suppose the x value in seconds corresponds a time slightly before midnight on 25 Dec 1976. The text printed
for a tic label at this position would be

defaults to "12/25/76 \n 23:11"
"Saturday, 25 Dec 1976"
"11:11:11 pm 12/25/76"
"December"

set format x

set format x "%A, %d %b %Y"
set format x "%r J%D"

set xtics time format "%B"

Examples of time format:

The date format specifiers encode a time in seconds as a clock time on a particular day. So hours run only
from 0-23, minutes from 0-59, and negative values correspond to dates prior to the epoch (1-Jan-1970). In
order to report a time value in seconds as some number of hours/minutes/seconds relative to a time 0, use
time formats %tH %tM %tS. To report a value of -3672.50 seconds

default date format "12/31/69 \n 22:58"
"%tH:%tM:%tS" # "-01:01:12"
"%.2tH hours" # "-1.02 hours"
"%tM:%.2tS" # "-61:12.50"

set format
set format
set format

X
X
X

set format x

Grid

The set grid command allows grid lines to be drawn on the plot.
Syntax:

set grid {{noX{m}xtics} {{noM m}ytics} {{no}{m}ztics}
{{no*t{m}x2tics} {{not{m}y2tics} {{not{m}rtics}
{{no}{m}cbtics}
{polar {<angle>}}
{layerdefault | front | back}
{{no}vertical}
{<line-properties-major> {, <line-properties-minor>}}
unset grid
show grid

The grid can be enabled and disabled for the major and/or minor tic marks on any axis, and the linetype
and linewidth can be specified for major and minor grid lines, also via a predefined linestyle, as far as the
active terminal driver supports this (see set style line (p. 227)).

A polar grid can be drawn for 2D plots. This is the default action of set grid if the program is already in
polar mode, but can be enabled explicitly by set grid polar <angle> rtics whether or not the program is
in polar mode. Circles are drawn to intersect major and/or minor tics along the r axis, and radial lines are

178 gnuplot 5.5

drawn with a spacing of <angle>. Tic marks around the perimeter are controlled by set ttics, but these
do not produce radial grid lines.

The pertinent tics must be enabled before set grid can draw them; gnuplot will quietly ignore instructions
to draw grid lines at non-existent tics, but they will appear if the tics are subsequently enabled.

If no linetype is specified for the minor gridlines, the same linetype as the major gridlines is used. The
default polar angle is 30 degrees.

If front is given, the grid is drawn on top of the graphed data. If back is given, the grid is drawn underneath
the graphed data. Using front will prevent the grid from being obscured by dense data. The default setup,
layerdefault, is equivalent to back for 2D plots. In 3D plots the default is to split up the grid and the
graph box into two layers: one behind, the other in front of the plotted data and functions. Since hidden3d
mode does its own sorting, it ignores all grid drawing order options and passes the grid lines through the
hidden line removal machinery instead. These options actually affect not only the grid, but also the lines
output by set border and the various ticmarks (see set xtics (p. 245)).

In 3D plots grid lines at x- and y- axis tic positions are by default drawn only on the base plane parallel to
z=0. The vertical keyword activates drawing grid lines in the xz and yz planes also, running from zmin to
zZmax.

7Z grid lines are drawn on the bottom of the plot. This looks better if a partial box is drawn around the plot
— see set border (p. 157).

Hidden3d

The set hidden3d command enables hidden line removal for surface plotting (see splot (p. 255)). Some
optional features of the underlying algorithm can also be controlled using this command.

Syntax:

set hidden3d {defaults} |
{ {front|back}

{{offset <offset>} | {nooffsetl}}
{trianglepattern <bitpattern>}
{{undefined <level>} | {noundefined}}
{{no}altdiagonal}
{{no}bentover} }

unset hidden3d

show hidden3d

In contrast to the usual display in gnuplot, hidden line removal actually treats the given function or data
grids as real surfaces that can’t be seen through, so plot elements behind the surface will be hidden by it.
For this to work, the surface needs to have ’grid structure’ (see splot datafile (p. 256) about this), and it
has to be drawn with lines or with linespoints.

When hidden3d is set, both the hidden portion of the surface and possibly its contours drawn on the base
(see set contour (p. 165)) as well as the grid will be hidden. Each surface has its hidden parts removed
with respect to itself and to other surfaces, if more than one surface is plotted. Contours drawn on the
surface (set contour surface) don’t work.

hidden3d also affects 3D plotting styles points, labels, vectors, and impulses even if no surface is
present in the graph. Unobscured portions of each vector are drawn as line segments (no arrowheads).
Individual plots within the graph may be explicitly excluded from this processing by appending the extra
option nohidden3d to the with specifier.

Hidden3d does not affect solid surfaces drawn using the pm3d mode. To achieve a similar effect purely
for pm3d surfaces, use instead set pm3d depthorder. To mix pm3d surfaces with normal hidden3d
processing, use the option set hidden3d front to force all elements included in hidden3d processing to be
drawn after any remaining plot elements, including the pm3d surface.

gnuplot 5.5 179

Functions are evaluated at isoline intersections. The algorithm interpolates linearly between function points
or data points when determining the visible line segments. This means that the appearance of a function
may be different when plotted with hidden3d than when plotted with nohidden3d because in the latter
case functions are evaluated at each sample. Please see set samples (p. 221) and set isosamples (p. 180)
for discussion of the difference.

The algorithm used to remove the hidden parts of the surfaces has some additional features controllable by
this command. Specifying defaults will set them all to their default settings, as detailed below. If defaults
is not given, only explicitly specified options will be influenced: all others will keep their previous values, so
you can turn on/off hidden line removal via set {no}hidden3d, without modifying the set of options you
chose.

The first option, offset, influences the linetype used for lines on the ’back’ side. Normally, they are drawn
in a linetype one index number higher than the one used for the front, to make the two sides of the surface
distinguishable. You can specify a different linetype offset to add instead of the default 1, by offset <offset>.
Option nooffset stands for offset 0, making the two sides of the surface use the same linetype.

Next comes the option trianglepattern <bitpattern>. <bitpattern> must be a number between 0 and
7, interpreted as a bit pattern. Each bit determines the visibility of one edge of the triangles each surface
is split up into. Bit 0 is for the ’horizontal’ edges of the grid, Bit 1 for the ’vertical’ ones, and Bit 2 for
the diagonals that split each cell of the original grid into two triangles. The default pattern is 3, making all
horizontal and vertical lines visible, but not the diagonals. You may want to choose 7 to see those diagonals
as well.

The undefined <level> option lets you decide what the algorithm is to do with data points that are
undefined (missing data, or undefined function values), or exceed the given x-, y- or z-ranges. Such points
can either be plotted nevertheless, or taken out of the input data set. All surface elements touching a point
that is taken out will be taken out as well, thus creating a hole in the surface. If <level> = 3, equivalent to
option noundefined, no points will be thrown away at all. This may produce all kinds of problems elsewhere,
so you should avoid this. <level> = 2 will throw away undefined points, but keep the out-of-range ones.
<level> = 1, the default, will get rid of out-of-range points as well.

By specifying noaltdiagonal, you can override the default handling of a special case can occur if undefined
is active (i.e. <level> is not 3). Each cell of the grid-structured input surface will be divided in two triangles
along one of its diagonals. Normally, all these diagonals have the same orientation relative to the grid. If
exactly one of the four cell corners is excluded by the undefined handler, and this is on the usual diagonal,
both triangles will be excluded. However if the default setting of altdiagonal is active, the other diagonal
will be chosen for this cell instead, minimizing the size of the hole in the surface.

The bentover option controls what happens to another special case, this time in conjunction with the
trianglepattern. For rather crumply surfaces, it can happen that the two triangles a surface cell is divided
into are seen from opposite sides (i.e. the original quadrangle is ’bent over’), as illustrated in the following
ASCII art:

C----B
original quadrangle: A--B displayed quadrangle: I\ |
("set view 0,0") (A ("set view 75,75" perhaps) | \ |

If the diagonal edges of the surface cells aren’t generally made visible by bit 2 of the <bitpattern> there,
the edge CB above wouldn’t be drawn at all, normally, making the resulting display hard to understand.
Therefore, the default option of bentover will turn it visible in this case. If you don’t want that, you may
choose nobentover instead. See also hidden line removal demo (hidden.dem)

and complex hidden line demo (singulr.dem).

http://www.gnuplot.info/demo/hidden.html
http://www.gnuplot.info/demo/singulr.html

180 gnuplot 5.5

Historysize

(Deprecated). set historysize N is equivalent to set history size N. unset historysize is equivalent to
set history size -1.

History

Syntax:
set history {size <N>} {quiet|numbers} {full|trim} {default}

A log of recent gnuplot commands is kept by default in $SHOME/.gnuplot_history. If this file is not found
and xdg desktop support is enabled, the program will instead use $XDG_STATE_HOME/gnuplot_history.

When leaving gnuplot the value of history size limits the number of lines saved to the history file. set
history size -1 allows an unlimited number of lines to be written to the history file.

By default the history command prints a line number in front of each command. history quiet suppresses
the number for this command only. set history quiet suppresses numbers for all future history commands.

The trim option reduces the number of duplicate lines in the history list by removing earlier instances of
the current command.

Default settings: set history size 500 numbers trim.

Isosamples

The isoline density (grid) for plotting functions as surfaces may be changed by the set isosamples command.
Syntax:

set isosamples <iso_1> {,<iso_2>}
show isosamples

Each function surface plot will have <iso_1> iso-u lines and <iso_2> iso-v lines. If you only specify <iso_1>,
<is0_2> will be set to the same value as <iso_1>. By default, sampling is set to 10 isolines per u or v axis.
A higher sampling rate will produce more accurate plots, but will take longer. These parameters have no
effect on data file plotting.

An isoline is a curve parameterized by one of the surface parameters while the other surface parameter is
fixed. Isolines provide a simple means to display a surface. By fixing the u parameter of surface s(u,v), the
iso-u lines of the form c(v) = s(u0,v) are produced, and by fixing the v parameter, the iso-v lines of the form
c(u) = s(u,v0) are produced.

When a function surface plot is being done without the removal of hidden lines, set samples controls the
number of points sampled along each isoline; see set samples (p. 221) and set hidden3d (p. 178). The
contour algorithm assumes that a function sample occurs at each isoline intersection, so change in samples
as well as isosamples may be desired when changing the resolution of a function surface/contour.

Isosurface

Syntax:

set isosurface {mixed|triangles}
set isosurface {no}tinsidecolor <n>

Surfaces plotted by the command splot $voxelgrid with isosurface are by default constructed from a
mixture of quadrangles and triangles. The use of quadrangles creates a less complicated visual impression.
This command provides an option to tessellate with only triangles.

gnuplot 5.5 181

By default the inside of an isosurface is drawn in a separate color. The method of choosing that color is the
same as for hidden3d surfaces, where an offset <n> is added to the base linetype. To draw both the inside
and outside surfaces in the same color, use set isosurface noinsidecolor.

Isotropic

Syntax:
set isotropic
unset isotropic

set isotropic adjusts the aspect ratio and size of the plot so that the unit length along the x, y, and z
axes is the same. It is equivalent to set size ratio -1; set view equal xyz and supersedes both of those
commands. This affects both 2D and 3D plots.

unset isotropic relaxes both the 2D and 3D constraints. It is equivalent to the older commands set size
noratio; set view noequal_axes but hopefully easier to remember.

Jitter

Syntax:
set jitter {overlap <yposition>} {spread <factor>} {wrap <limit>}
{swarm|square|vertical}

Examples:
set jitter # jitter points within 1 character width
set jitter overlap 1.5 # jitter points within 1.5 character width

set jitter over 1.5 spread 0.5 # same but half the displacement on x

When one or both coordinates of a data set are restricted to discrete values then many points may lie exactly
on top of each other. Jittering introduces an offset to the coordinates of these superimposed points that
spreads them into a cluster. The threshold value for treating the points as being overlapped may be specified
in character widths or any of the usual coordinate options. See coordinates (p. 37). Jitter affects 2D plot
styles with points and with impulses. It also affects 3D plotting of voxel grids.

The default jittering operation displaces points only along x. This produces a distinctive pattern sometimes
called a "bee swarm plot". The optional keyword square adjusts the y coordinate of displaced points in
addition to their x coordinate so that the points lie in distinct layers separated by at least the overlap
distance.

To jitter along y (only) rather than along x, use keyword vertical.
The maximum displacement (in character units) can be limited using the wrap keyword.

Note that both the overlap criterion and the magnitude of jitter default to one character unit. Thus the
plot appearance will change with the terminal font size, canvas size, or zoom factor. To avoid this you can
specify the overlap criterion in the y axis coordinate system (the first keyword) and adjust the point size
and spread multiplier as appropriate. See coordinates (p. 37), pointsize (p. 218).

Caveat: jitter is incompatible with "pointsize variable".

set jitter is also useful in 3D plots of voxel data. Because voxel grids are regular lattices of evenly spaced
points, many view angles cause points to overlap and/or generate Moiré patterns. These artifacts can be
removed by displacing the symbol drawn at each grid point by a random amount.

Key

The set key command enables a key (or legend) containing a title and a sample (line, point, box) for each
plot in the graph. The key may be turned off by requesting set key off or unset key. Individual key

182 gnuplot 5.5

entries may be turned off by using the notitle keyword in the corresponding plot command. The text of the
titles is controlled by the set key autotitle option or by the title keyword of individual plot and splot
commands. Many options are available to control the placement and layout of the key.

Syntax:

set key {on|off} {default}
{{no}enhanced}
{{no}autotitle {columnheader}}
{{no}box {<line properties>}} {{no}ropaque {fc <colorspec>}}
{width <width_increment>} {height <height_increment>}
{offset <dx>,<dy>}

unset key

By default the key is placed in the upper right inside corner of the graph. For placement options, see key
placement (p. 185).

Each component in a plot command is represented in the key by a single line containing corresponding title
text and a line or symbol or shape representing the plot style. The title text may be auto-generated or
given explicitly in the plot command as title "text". Using the keyword notitle in the plot command
will suppress generation of the entire line. If you want to suppress the text only, use title "" in the plot
command. Contour plots generated additional entries in the key (see cntrlabel (p. 161)). You can add
extra lines to the key by inserting a dummy plot command that uses the keyword keyentry rather than
a filename or a function. See keyentry (p. 184). For options to customize the layout of the titles and
samples in the key see key layout (p. 184).

A box can be drawn around the key (box {...}) with user-specified line properties. The height and width
increments (specified in character units) are added to or subtracted from the size of the key box. This is
useful mainly when you want larger borders around the key entries.

By default the key is built up one plot at a time. That is, the key symbol and title are drawn at the same
time as the corresponding plot. That means newer plots may sometimes place elements on top of the key.
set key opaque causes the key to be generated after all the plots. In this case the key area is filled with
background color or the requested fill color and then the key symbols and titles are written. The default can
be restored by set key noopaque.

The text in the key uses enhanced mode by default. This can be suppressed by the noenhanced keyword
applied to the entire key, to the key title only, or to individual plot titles.

set key default restores the default key configuration.
set key fixed right top vertical Right noreverse enhanced autotitle
set key nobox noopaque
set key noinvert samplen 4 spacing 1 width O height O

3D key

Placement of the key for 3D plots (splot) by default uses the fixed option. This is very similar to inside
placement with one important difference. The plot boundaries of a 3D plot change as the view point is
rotated or scaled. If the key is positioned inside these boundaries then the key also moves when the view is
changed. fixed positioning ignores changes to the view angles or scaling; i.e. the key remains fixed in one
location on the canvas as the plot is rotated.

For 2D plots the fixed option is exactly equivalent to inside.

If splot is being used to draw contours, by default a separate key entry is generated for each contour level
with a distinct line type. To modify this see set cntrlabel (p. 161).

Key examples

This places the key at the default location:

gnuplot 5.5 183

set key default

This places a key at a specific place (upper right) on the screen:
set key at screen 0.85, 0.85

This places the key below the graph and minimizes the vertical space taken:

set key below horizontal

This places the key in the bottom left corner of the plot, left-justifies the text, gives the key box a title at
the top, and draws a box around it with a thick border:

set key left bottom Left title ’Legend’ box 1lw 3

184 gnuplot 5.5

Extra key entries

Normally each plot autogenerates a single line entry in

Construct key from custom entries
the key. If you need more control over what appears ruct ey from <t i

in the key you can use the keyentry keyword in the 0 ! 2 } M

plot or splot command to insert extra lines. Instead of 0

providing a filename or function to plot, use keyentry as Outcomes

a placeholder followed by plot style information (used to 1 g ‘t‘]:’r::lf;cl;
generate a key symbol) and a title. All the usual options 3 typical range
for title font, text color, at coordinates, and enhanced 2 = sfr;pgogigcitn H
text markup apply. Example:)

set key outside right center title "Outcomes"

plot $HEATMAP matrix with image notitle, \
keyentry with boxes fc palette cb O title "no effect", \
keyentry with boxes fc palette cb 1 title "threshold", \
keyentry with boxes fc palette cb 3 title "typical range", \
keyentry with labels nopoint title "as reported in [12]", \
keyentry with boxes fc palette cb 5 title "strong effect"

Key autotitle

set key autotitle causes each plot to be identified in the key by the name of the data file or function used
in the plot command. This is the default. set key noautotitle disables the automatic generation of plot
titles. The command set key autotitle columnheader causes the first entry in each column of input data
to be interpreted as a text string and used as a title for the corresponding plot. If the quantity being plotted
is a function of data from several columns, gnuplot may be confused as to which column to draw the title
from. In this case it is necessary to specify the column explicitly in the plot command, e.g.

plot "datafile" using (($2+$3)/$4) title columnhead(3) with lines

Note: The effect of set key autotitle columnheader, treatment of the first line in a data file as column
headers rather than data applies even if the key is disabled by unset key. It also applies to stats and fit
commands even though they generate no key. If you want the first line of data to be treated as column
headers but not to use them for plot titles, use set datafile columnheaders.

In all cases an explicit title or notitle keyword in the plot command itself will override the default from
set key autotitle.

Key layout

Key layout options:

set key {vertical | horizontal}
{maxcols {<max no. of columns> | autol}}
{maxrows {<max no. of rows> | autol}}
{columns <exact no. of columns>}
{keywidth [screen|graph] <fraction>}
{Left | Right}
{{no}reverse} {{no}invert}
{samplen <sample_length>} {spacing <line_spacing>}
{width <width_increment>} {height <height_increment>}
{title {"<text>"} {{nol}enhanced} {center | left | right}}
{font "<face>,<size>"} {textcolor <colorspec>}

gnuplot 5.5 185

Automatic arrangement of elements within the key into rows and columns is affected by the keywords shown
above. The default is vertical, for which the key uses the fewest columns possible. Elements are aligned in
a column until there is no more vertical space, at which point a new column is started. The vertical space
may be limited using 'maxrows’. In the case of horizontal, the key instead uses the fewest rows possible.
The horizontal space may be limited using 'maxcols’.

The auto-selected number of rows and columns may be unsatisfactory. You can specify a definite number of
columns using set key columns <N>. In this case you may need to adjust the sample widths (samplen)
and the total key width (keywidth).

By default the first plot label is at the top of the key and successive labels are entered below it. The invert
option causes the first label to be placed at the bottom of the key, with successive labels entered above it.
This option is useful to force the vertical ordering of labels in the key to match the order of box types in a
stacked histogram.

set key title "text" places an overall title at the top of the key. Font, text justification, and other text
properties specific to the title can be specified by placing the required keywords immediately after the "text"
in this command. Font or text properties specified elsewhere apply to all text in the key.

The default layout places a style sample (color, line, point, shape, etc) at the left of the key entry line,
and the title text at the right. The text and sample positions can be swapped using the reverse keyword.
Text justification of the individual plot titles within the key is controlled by Left or Right (default). The
horizontal extend of the style sample can be set to an approximate number of character width (samplen).

When using the TeX/LaTeX group of terminals or terminals in which formatting information is embedded
in the string, gnuplot is bad at estimating the amount of space required, so the automatic key layout may
be poor. If the key is to be positioned at the left, it may help to use the combination set key left Left
reverse and force the appropriate number of columns or total key width.

Key placement

Key placement options:
set key {inside | outside | fixed}
{lmargin | rmargin | tmargin | bmargin}
{at <position>}}
{left | right | center} {top | bottom | center}

This section describes placement of the primary, auto-generated key. To construct a secondary key or place
plot titles elsewhere, see multiple keys (p. 186).

To understand positioning, the best concept is to think of a region, i.e., inside/outside, or one of the margins.
Along with the region, keywords left /center /right (1/c/r) and top/center /bottom (t/c/b) control where
within the particular region the key should be placed.

When in inside mode, the keywords left (1), right (r), top (t), bottom (b), and center (c) push the key
out toward the plot boundary as illustrated:

t/1 t/c t/r
c/1 c c/r
b/1 b/c Db/r

When in outside mode, automatic placement is similar to the above illustration, but with respect to the
view, rather than the graph boundary. That is, a border is moved inward to make room for the key outside of
the plotting area, although this may interfere with other labels and may cause an error on some devices. The
particular plot border that is moved depends upon the position described above and the stacking direction.
For options centered in one of the dimensions, there is no ambiguity about which border to move. For the
corners, when the stack direction is vertical, the left or right border is moved inward appropriately. When
the stack direction is horizontal, the top or bottom border is moved inward appropriately.

186 gnuplot 5.5

The margin syntax allows automatic placement of key regardless of stack direction. When one of the margins
Imargin (Im), rmargin (rm), tmargin (tm), and bmargin (bm) is combined with a single, non-conflicting
direction keyword, the following illustrated positions may contain the key:

1/tm c/tm r/tm

t/1m t/rm
c/1m c/rm
b/1m b/rm

1/bm c/bm r/bm

Keywords above and over are synonymous with tmargin. For version compatibility, above or over without
an additional 1/c/r or stack direction keyword uses center and horizontal. Keywords below and under
are synonymous with bmargin. For compatibility, below or under without an additional 1/c/r or stack
direction keyword uses center and horizontal. A further compatibility issue is that outside appearing
without an additional t/b/c or stack direction keyword uses top, right and vertical (i.e., the same as t/rm
above).

The <position> can be a simple x,y,z as in previous versions, but these can be preceded by one of five
keywords (first, second, graph, screen, character) which selects the coordinate system in which the
position of the first sample line is specified. See coordinates (p. 37) for more details. The effect of
left, right, top, bottom, and center when <position> is given is to align the key as though it were text
positioned using the label command, i.e., left means left align with key to the right of <position>, etc.

Key offset

Regardless of the key placement options chosen, the final position of the key can be adjusted manually by
specifying an offset. As usual, the x and y components of the offset may be given in character, graph, or
screen coordinates.

Key samples

By default, each plot on the graph generates a corresponding entry in the key. This entry contains a plot
title and a sample line/point/box of the same color and fill properties as used in the plot itself. The font
and textcolor properties control the appearance of the individual plot titles that appear in the key. Setting
the textcolor to "variable" causes the text for each key entry to be the same color as the line or fill color for
that plot. This was the default in some earlier versions of gnuplot.

The length of the sample line can be controlled by samplen. The sample length is computed as the sum of
the tic length and <sample_length> times the character width. It also affects the positions of point samples
in the key since these are drawn at the midpoint of the sample line, even if the line itself is not drawn.

Key entry lines are single-spaced based on the current font size. This can be adjusted by set key spacing
<line-spacing>.

The <width_increment> is a number of character widths to be added to or subtracted from the length of the
string. This is useful only when you are putting a box around the key and you are using control characters
in the text. gnuplot simply counts the number of characters in the string when computing the box width;
this allows you to correct it.

Multiple keys

gnuplot 5.5 187

It is possible to construct a legend/key manually rather Hlustrate use of a custom key area

than having the plot titles all appear in the auto-
generated key. This allows, for example, creating a single
legend for the component panels in a multiplot.

set multiplot layout 3,2 columnsfirst total —@—
set style data boxes
plot $D using 0:6 1t 1 title at 0.75, 0.20

plot $D using 0:12 1t 2 title at 0.75, 0.17 T stom combined key area
plot $D using 0:13 1t 3 title at 0.75, 0.14 N91§E{QV§§‘§=
plot $D using 0:14 1t 4 title at 0.75, 0.11 el

set label 1 at screen 0.75, screen 0.22 "Custom combined key area"
plot $D using 0:($6+$12+$13+$14) with linespoints title "total"
unset multiplot

Label

Arbitrary labels can be placed on the plot using the set label command.
Syntax:

set label {<tag>} {"<label text>"} {at <position>}
{left | center | right}
{norotate | rotate {by <degrees>}}
{font "<name>{,<size>}"}
{noenhanced}
{front | back}
{textcolor <colorspec>}
{point <pointstyle> | nopoint}
{offset <offset>}
{nobox} {boxed {bs <boxstyle>}}
{hypertext}

unset label {<tag>}

show label

The <position> is specified by either x,y or x,y,z, and may be preceded by first, second, polar, graph,
screen, or character to indicate the coordinate system. See coordinates (p. 37) for details.

The tag is an integer that is used to identify the label. If no <tag> is given, the lowest unused tag value is
assigned automatically. The tag can be used to delete or modify a specific label. To change any attribute of
an existing label, use the set label command with the appropriate tag, and specify the parts of the label to
be changed.

The <label text> can be a string constant, a string variable, or a string- valued expression. See strings
(p. 70), sprintf (p. 45), and gprintf (p. 175).

By default, the text is placed flush left against the point x,y,z. To adjust the way the label is positioned with
respect to the point x,y,z, add the justification parameter, which may be left, right or center, indicating
that the point is to be at the left, right or center of the text. Labels outside the plotted boundaries are
permitted but may interfere with axis labels or other text.

Some terminals support enclosing the label in a box. See set style textbox (p. 230). Not all terminals
can handle boxes for rotated text.

If rotate is given, the label is written vertically. If rotate by <degrees> is given, the baseline of the text
will be set to the specified angle. Some terminals do not support text rotation.

Font and its size can be chosen explicitly by font "<name>{,<size>}" if the terminal supports font
settings. Otherwise the default font of the terminal will be used.

188 gnuplot 5.5

Normally the enhanced text mode string interpretation, if enabled for the current terminal, is applied to all
text strings including label text. The noenhanced property can be used to exempt a specific label from
the enhanced text mode processing. The can be useful if the label contains underscores, for example. See
enhanced text (p. 38).

If front is given, the label is written on top of the graphed data. If back is given (the default), the label is
written underneath the graphed data. Using front will prevent a label from being obscured by dense data.

textcolor <colorspec> changes the color of the label text. <colorspec> can be a linetype, an rgb color,
or a palette mapping. See help for colorspec (p. 62) and palette (p. 45). textcolor may be abbreviated
tc.

‘tc default‘ resets the text color to its default state.

‘tc 1t <n>‘¢ sets the text color to that of line type <n>.

‘tc 1s <n>‘ sets the text color to that of line style <n>.

‘tc palette z¢ selects a palette color corresponding to the label z position.

‘tc palette cb <val>‘ selects a color corresponding to <val> on the colorbar.

‘tc palette fraction <val>‘, with O<=val<=1, selects a color corresponding to

the mapping [0:1] to grays/colors of the ‘palette‘.
‘tc rgb "#RRGGBB"‘ or ‘tc rgb "OxRRGGBB"‘ sets an arbitrary 24-bit RGB color.
‘tc rgb OxRRGGBB‘ As above; a hexadecimal constant does not require quotes.

If a <pointstyle> is given, using keywords 1t, pt and ps, see style (p. 147), a point with the given style
and color of the given line type is plotted at the label position and the text of the label is displaced slightly.
This option is used by default for placing labels in mouse enhanced terminals. Use nopoint to turn off the
drawing of a point near the label (this is the default).

The displacement defaults to 1,1 in pointsize units if a <pointstyle> is given, 0,0 if no <pointstyle> is
given. The displacement can be controlled by the optional offset <offset> where <offset> is specified
by either x,y or x,y,z, and may be preceded by first, second, graph, screen, or character to select the
coordinate system. See coordinates (p. 37) for details.

If one (or more) axis is timeseries, the appropriate coordinate should be given as a quoted time string
according to the timefmt format string. See set xdata (p. 241) and set timefmt (p. 235).

The options available for set label are also available for the labels plot style. See labels (p. 93). In this
case the properties textcolor, rotate, and pointsize may be followed by keyword variable rather than
by a fixed value. In this case the corresponding property of individual labels is determined by additional
columns in the using specifier.

Examples

Examples:
To set a label at (1,2) to "y=x", use:
set label "y=x" at 1,2

To set a Sigma of size 24, from the Symbol font set, at the center of the graph, use:
set label "S" at graph 0.5,0.5 center font "Symbol,24"

To set a label "y=x"2" with the right of the text at (2,3,4), and tag the label as number 3, use:
set label 3 "y=x"2" at 2,3,4 right

To change the preceding label to center justification, use:

set label 3 center

To delete label number 2, use:
unset label 2

gnuplot 5.5 189

To delete all labels, use:
unset label

To show all labels (in tag order), use:
show label

To set a label on a graph with a timeseries on the x axis, use, for example:
set timefmt "%d/%m/%y,%H:%M"
set label "Harvest" at "25/8/93",1

To display a freshly fitted parameter on the plot with the data and the fitted function, do this after the fit,
but before the plot:

set label sprintf("a = %3.5g",par_a) at 30,15

bfit = gprintf("b = %s*107%S",par_b)

set label bfit at 30,20

To display a function definition along with its fitted parameters, use:
f (x)=a+b*x
fit f(x) ’datafile’ via a,b
set label GPFUN_f at graph .05,.95
set label sprintf("a = Y%g", a) at graph .05,.90
set label sprintf("b = Y%g", b) at graph .05,.85

To set a label displaced a little bit from a small point:
set label ’origin’ at 0,0 point 1t 1 pt 2 ps 3 offset 1,-1

To set a label whose color matches the z value (in this case 5.5) of some point on a 3D splot colored using
pm3d:
set label ’text’ at 0,0,5.5 tc palette z

Hypertext

Some terminals (wxt, qt, svg, canvas, win) allow you to attach hypertext to specific points on the graph or
elsewhere on the canvas. When the mouse hovers over the anchor point, a pop-up box containing the text
is displayed. Terminals that do not support hypertext will display nothing. You must enable the point
attribute of the label in order for the hypertext to be anchored. Enhanced text markup is not applied to
hypertext labels. Examples:

set label at 0,0 "Plot origin" hypertext point pt 1

plot ’data’ using 1:2:0 with labels hypertext point pt 7 \

title ’mouse over point to see its order in data set’

mousing over any point of this pm3d surface will display
its Z coordinate as hypertext
splot ’++’ using 1:2:(F($1,$2)) with pm3d, \
’++° using 1:2:(F($1,$2)): (sprintf ("%.3f", F($1,$2))) with labels \
hypertext point 1lc rgb "0xff000000" notitle

For the wxt and qt terminals, left-click on a hypertext anchor after the text has appeared will copy the
hypertext to the clipboard.

EXPERIMENTAL (implementation details may change) - Text of the form
"image{ <xsize>,<ysize>}:<filename>{\n<caption text>}" will trigger display of the image file in a
pop-up box. The optional size overrides a default box size 300x200. The types of image file recognized
may vary by terminal type, but *.png should always work. Any additional text lines following the image
filename are displayed as usual for hypertext. Example:

set label 7 "image:../figures/Fig7_inset.png\nFigure 7 caption..."

set label 7 at 10,100 hypertext point pt 7

190 gnuplot 5.5

Linetype

The set linetype command allows you to redefine the basic linetypes used for plots. The command options
are identical to those for "set style line". Unlike line styles, redefinitions by set linetype are persistent;
they are not affected by reset.

For example, whatever linetypes one and two look like to begin with, if you redefine them like this:

set linetype 1 1w 2 1lc rgb "blue" pointtype 6
set linetype 2 lw 2 lc rgb "forest-green" pointtype 8

everywhere that uses It 1 will now get a thick blue line. This includes uses such as the definition of a
temporary linestyle derived from the base linetype 1. Similarly 1t 2 will now produce a thick green line.

This mechanism can be used to define a set of personal preferences for the sequence of lines used in gnuplot.
The recommended way to do this is to add to the run-time initialization file ~ /.gnuplot a sequence of
commands like

set linetype 1 1lc rgb "dark-violet" 1lw 2 pt 1

set linetype 2 lc rgb "sea-green" lw 2 pt 7

set linetype 3 lc rgb "cyan" lw 2 pt 6 pi -1
set linetype 4 lc rgb "dark-red" lw 2 pt 5 pi -1
set linetype 5 lc rgb "blue" lw 2 pt 8

set linetype 6 lc rgb "dark-orange" 1lw 2 pt 3

set linetype 7 1lc rgb "black" lw 2 pt 11

set linetype 8 lc rgb "goldenrod" 1w 2

set linetype cycle 8

Every time you run gnuplot the line types will be initialized to these values. You may initialize as many
linetypes as you like. If you do not redefine, say, linetype 3 then it will continue to have the default properties
(in this case blue, pt 3, lw 1, etc).

Similar script files can be used to define theme-based color choices, or sets of colors optimized for a particular
plot type or output device.

The command set linetype cycle 8 tells gnuplot to re-use these definitions for the color and linewidth of
higher-numbered linetypes. That is, linetypes 9-16, 17-24, and so on will use this same sequence of colors
and widths. The point properties (pointtype, pointsize, pointinterval) are not affected by this command.
unset linetype cycle disables this feature. If the line properties of a higher numbered linetype are explicitly
defined, this takes precedence over the recycled low-number linetype properties.

Link

Syntax:
set link {x2 | y2} {via <expressionl> inverse <expression2>}
unset link

The set link command establishes a mapping between the x and x2 axes, or the y and y2 axes.
<expression1> maps primary axis coordinates onto the secondary axis. <expression2> maps secondary
axis coordinates onto the primary axis.

Examples:
set link x2

This is the simplest form of the command. It forces the x2 axis to have identically the same range, scale,
and direction as the x axis. Commands set xrange, set x2range, set auto x, etc will affect both the x
and x2 axes.

set link x2 via x**2 inverse sqrt(x)
plot "sqrt_data" using 1:2 axes x2yl, "linear_data" using 1:2 axes xlyl

gnuplot 5.5 191

This command establishes forward and reverse mapping between the x and x2 axes. The forward mapping
is used to generate x2 tic labels and x2 mouse coordinate The reverse mapping is used to plot coordinates
given in the x2 coordinate system. Note that the mapping as given is valid only for x non-negative. When
mapping to the y2 axis, both <expressionl> and <expression2> must use y as dummy variable.

Lmargin

The command set lmargin sets the size of the left margin. Please see set margin (p. 193) for details.

Loadpath

The loadpath setting defines additional locations for data and command files searched by the call, load,
plot and splot commands. If a file cannot be found in the current directory, the directories in loadpath
are tried.

Syntax:

set loadpath {"pathlistl" {"pathlist2"...}}
show loadpath

Path names may be entered as single directory names, or as a list of path names separated by a platform-
specific path separator, eg. colon (’:’) on Unix, semicolon (’;’) on DOS/Windows/OS/2 platforms. The show
loadpath, save and save set commands replace the platform-specific separator with a space character (’

7).
If the environment variable GNUPLOT _LIB is set, its contents are appended to loadpath. However, show

loadpath prints the contents of set loadpath and GNUPLOT_LIB separately. Also, the save and save
set commands ignore the contents of GNUPLOT_LIB.

Locale

The locale setting determines the language with which {x,y,z}{d,m}tics will write the days and months.

Syntax:
set locale {"<locale>"}

<locale> may be any language designation acceptable to your installation. See your system documentation
for the available options. The command set locale "" will try to determine the locale from the LC_TIME,
LC_ALL, or LANG environment variables.

To change the decimal point locale, see set decimalsign (p. 169). To change the character encoding to
the current locale, see set encoding (p. 171).

Logscale

Syntax:
set logscale <axes> {<base>}
unset logscale <axes>
show logscale

where <axes> may be any combinations of x, x2, y, y2, z, cb, and r in any order. <base> is the base
of the log scaling (default is base 10). If no axes are specified, the command affects all axes except r. The
command unset logscale turns off log scaling for all axes. Note that the ticmarks generated for logscaled
axes are not uniformly spaced. See set xtics (p. 245).

Examples:

To enable log scaling in both x and z axes:

192 gnuplot 5.5

set logscale xz

To enable scaling log base 2 of the y axis:

set logscale y 2

To enable z and color log axes for a pm3d plot:

set logscale zcb

To disable z axis log scaling:

unset logscale z

Macros

In this version of gnuplot macro substitution is always enabled. Tokens in the command line of the form
@<stringvariablename> will be replaced by the text string contained in <stringvariablename>. See sub-
stitution (p. 71).

Mapping

If data are provided to splot in spherical or cylindrical coordinates, the set mapping command should be
used to instruct gnuplot how to interpret them.

Syntax:

set mapping {cartesian | spherical | cylindrical}

A cartesian coordinate system is used by default.

For a spherical coordinate system, the data occupy two or three columns (or using entries). The first two
are interpreted as the azimuthal and polar angles theta and phi (or "longitude" and "latitude"), in the units
specified by set angles. The radius r is taken from the third column if there is one, or is set to unity if
there is no third column. The mapping is:

x = r * cos(theta) * cos(phi)
y = r * sin(theta) * cos(phi)
z = r * sin(phi)

Note that this is a "geographic" spherical system, rather than a "polar" one (that is, phi is measured from
the equator, rather than the pole).

For a cylindrical coordinate system, the data again occupy two or three columns. The first two are interpreted
as theta (in the units specified by set angles) and z. The radius is either taken from the third column or
set to unity, as in the spherical case. The mapping is:

x = r * cos(theta)
y = r * sin(theta)
zZ =2z

The effects of mapping can be duplicated with the using specifier of the splot command, but mapping
may be more convenient if many data files are to be processed. However even if mapping is used, using
may still be necessary if the data in the file are not in the required order.

mapping has no effect on plot. world.dem: mapping demos.

http://www.gnuplot.info/demo/world.html

gnuplot 5.5 193

Margin

The margin is the distance between the plot border and the outer edge of the canvas. The size of the margin
is chosen automatically, but can be overridden by the set margin commands. show margin shows the
current settings. To alter the distance between the inside of the plot border and the data in the plot itself,
see set offsets (p. 204).

Syntax:
set lmargin {{at screen} <margin>}
set rmargin {{at screen} <margin>}
set tmargin {{at screen} <margin>}
set bmargin {{at screen} <margin>}
set margins <left>, <right>, <bottom>, <top>
show margin

The default units of <margin> are character heights or widths, as appropriate. A positive value defines the
absolute size of the margin. A negative value (or none) causes gnuplot to revert to the computed value.
For 3D plots, only the left margin can be set using character units.

The keywords at screen indicates that the margin is specified as a fraction of the full drawing area. This
can be used to precisely line up the corners of individual 2D and 3D graphs in a multiplot. This placement
ignores the current values of set origin and set size, and is intended as an alternative method for positioning
graphs within a multiplot.

Normally the margins of a plot are automatically calculated based on tics, tic labels, axis labels, the plot
title, the timestamp and the size of the key if it is outside the borders. If, however, tics are attached to the
axes (set xtics axis, for example), neither the tics themselves nor their labels will be included in either the
margin calculation or the calculation of the positions of other text to be written in the margin. This can
lead to tic labels overwriting other text if the axis is very close to the border.

Micro

By default the "%c" format specifier for scientific notation used to generate axis tick labels uses a lower
case u as a prefix to indicate "micro" (107-6). The set micro command tells gnuplot to use a different
typographic character (unicode U4-00B5). The byte sequence used to represent this character depends on
the current encoding. See format specifiers (p. 175), encoding (p. 171).

If the current encoding default is not satisfactory, you can provide a character string that generates the
desired representation. This is mostly useful for latex terminals, for example
set micro "{\textmu}"

This command is EXPERIMENTAL. Implementation details may change.

Minussign

Gnuplot uses the C language library routine sprintf() for most formatted input. However it also has its
own formatting routine gprintf() that is used to generate axis tic labels. The C library routine always
use a hyphen character (ascii \055) to indicate a negative number, as in -7. Many people prefer a different
typographic minus sign character (unicode U+2212) for this purpose, as in —7. The command

set minussign

causes gprintf() to use this minus sign character rather than a hyphen in numeric output. In a utf-8 locale
this is the multibyte sequence corresponding to unicode U+2212. In a Window codepage 1252 locale this is
the 8-bit character ALT+150 ("en dash"). The set minussign command will affect axis tic labels and any
labels that are created by explicitly invoking gprintf. It has no effect on other strings that contain a hyphen.
See gprintf (p. 175).

194 gnuplot 5.5

Note that this command is ignored when you are using any of the LaTeX terminals, as LaTeX has its own
mechanism for handling minus signs. It also is not necessary when using the postscript terminal because the
postscript prologue output by gnuplot remaps the ascii hyphen code \055 to a different glyph named minus.

This command is EXPERIMENTAL. Implementation details may change.
Example (assumes utf8 locale):

set minus

A=-5

print "A = ",A # printed string will contain a hyphen

print gprintf("A = Jg",A) # printed string will contain character U+2212
set label "V = -5" # label will contain a hyphen

set label sprintf("V = %g",-5) # label will contain a hyphen
set label gprintf("V = %g",-5) # label will contain character U+2212

Monochrome

Syntax:
set monochrome {linetype N <linetype properties>}

The set monochrome command selects an alternative set of linetypes that differ by dot/dash pattern or
line width rather than by color. This command replaces the monochrome option offered by certain terminal
types in earlier versions of gnuplot. For backward compatibility these terminal types now implicitly invoke
"set monochrome" if their own "mono" option is present. For example,

set terminal pdf mono

is equivalent to

set terminal pdf
set mono

Selecting monochrome mode does not prevent you from explicitly drawing lines using RGB or palette colors,
but see also set palette gray (p. 209). Six monochrome linetypes are defined by default. You can change
their properties or add additional monochrome linetypes by using the full form of the command. Changes
made to the monochrome linetypes do not affect the color linetypes and vice versa. To restore the usual set
of color linetypes, use either unset monochrome or set color.

Mouse

The command set mouse enables mouse actions for the current interactive terminal. It is usually enabled
by default in interactive mode, but disabled by default if commands are being read from a file.

There are two mouse modes. The 2D mode works for plot commands and for splot maps (i.e. set view
with z-rotation 0, 90, 180, 270 or 360 degrees, including set view map). In this mode the mouse position is
tracked and you can pan or zoom using the mouse buttons or arrow keys. Some terminals support toggling
individual plots on/off by clicking on the corresponding key title or on a separate widget.

For 3D graphs splot, the view and scaling of the graph can be changed with mouse buttons 1 and 2,
respectively. A vertical motion of Button 2 with the shift key held down changes the xyplane. If additionally
to these buttons the modifier <ctrl> is held down, the coordinate axes are displayed but the data are
suppressed. This is useful for large data sets. Mouse button 3 controls the azimuth of the z axis (see set
view azimuth (p. 238)).

Mousing is not available inside multiplot mode. When multiplot is completed using unset multiplot, then
the mouse will be turned on again but acts only on the most recent plot within the multiplot (like replot
does).

Syntax:

gnuplot 5.5 195

set mouse {doubleclick <ms>} {nodoubleclick}
{{no}zoomcoordinates}
{zoomfactors <xmultiplier>, <ymultiplier>}
{noruler | ruler {at x,y}}
{polardistance{degl|tan} | nopolardistance}
{format <string>}
{mouseformat <int> | <string> | function <f(x,y)>}
{{no}labels {"labeloptions"}}
{{no}zoomjump} {{nol}verbose}

unset mouse

The options noruler and ruler switch the ruler off and on, the latter optionally setting the origin at the
given coordinates. While the ruler is on, the distance in user units from the ruler origin to the mouse is
displayed continuously. By default, toggling the ruler has the key binding r’.

The option polardistance determines if the distance between the mouse cursor and the ruler is also shown
in polar coordinates (distance and angle in degrees or tangent (slope)). This corresponds to the default key
binding ’5’.

Choose the option labels to define persistent gnuplot labels using Button 2. The default is nolabels, which
makes Button 2 draw only a temporary label at the mouse position. Labels are drawn with the current
setting of mouseformat. The labeloptions string is passed to the set label command. The default is
"point pointtype 1" which will plot a small plus at the label position. Temporary labels will disappear at
the next replot or mouse zoom operation. Persistent labels can be removed by holding the Ctrl-Key down
while clicking Button 2 on the label’s point. The threshold for how close you must be to the label is also
determined by the pointsize.

If the option verbose is turned on the communication commands are shown during execution. This option
can also be toggled by hitting 6 in the driver’s window. verbose is off by default.

Press ’h’ in the driver’s window for a short summary of the mouse and key bindings. This will also display
user defined bindings or hotkeys which can be defined using the bind command, see help for bind (p. 66).
Note, that user defined hotkeys may override the default bindings. See also help for bind (p. 66) and
label (p. 187).

Doubleclick

The doubleclick resolution is given in milliseconds and used for Button 1, which copies the current mouse
position to the clipboard on some terminals. The default value is 300 ms. Setting the value to 0 ms triggers
the copy on a single click.

Format

The set mouse format command specifies a format string for sprintf() which determines how the mouse
cursor [x,y] coordinates are printed to the plot window and to the clipboard. The default is "% #g".

This setting is superseded by "set mouse mouseformat".

Mouseformat

Syntax:
set mouse mouseformat i
set mouse mouseformat "custom format"
set mouse mouseformat function string_valued_function(x, y)

This command controls the format used to report the current mouse position. An integer argument selects
one of the format options in the table below. A string argument is used as a format for sprintf() in option 7

196 gnuplot 5.5

and should contain two float specifiers, one for x and one for y.

Use of a custom function returning a string is EXPERIMENTAL. It allows readout of coordinate systems
in which inverse mapping from screen coordinates to plot coordinates requires joint consideration of both x
and y. See for example the map_projection demo.

Example:
‘set mouse mouseformat "mouse x,y = %5.2g, %10.3f"‘.

Use set mouse mouseformat "" to turn this string off again.

The following formats are available:

0 default (same as 1)

1 axis coordinates 1.23, 2.45

2 graph coordinates (from O to 1) /0.00, 1.00/

3 x = timefmt y = axis [(as set by ‘set timefmt¢), 2.45]
4 x = date y = axis [31. 12. 1999, 2.45]

5 x = time y = axis [23:59, 2.45]

6 x = date time y = axis [31. 12. 1999 23:59, 2.45]

7 format from ‘set mouse mouseformat <format-string>‘

8 format from ‘set mouse mouseformat function <func>‘

Scrolling

X and Y axis scaling in both 2D and 3D graphs can be adjusted using the mouse wheel. <wheel-up>
scrolls up (increases both YMIN and YMAX by ten percent of the Y range, and increases both Y2MIN and
Y2MAX likewise), and <wheel down> scrolls down. <shift-wheel-up> scrolls left (decreases both XMIN
and XMAX, and both X2MIN and X2MAX), and <shift-wheel-down> scrolls right. <control-wheel-up>
zooms in toward the center of the plot, and <control-wheel-down> zooms out. <shift-control-wheel-up>
zooms in along the X and X2 axes only, and <shift-control-wheel-down> zooms out along the X and X2
axes only.

X11 mouse

If multiple X11 plot windows have been opened using the set term x11 <n> terminal option, then only
the current plot window supports the entire range of mouse commands and hotkeys. The other windows
will, however, continue to display mouse coordinates at the lower left.

Zoom

Zooming is usually accomplished by holding down the left mouse button and dragging the mouse to delineate
a zoom region. Some platforms may require using a different mouse button. The original plot can be restored
by typing the 'u’ hotkey in the plot window. The hotkeys 'p’ and 'n’ step back and forth through a history
of zoom operations.

The option zoomcoordinates determines if the coordinates of the zoom box are drawn at the edges while
zooming. This is on by default.

If the option zoomjump is on, the mouse pointer will be automatically offset a small distance after starting
a zoom region with button 3. This can be useful to avoid a tiny (or even empty) zoom region. zoomjump
is off by default.

Mttics

Minor tic marks around the perimeter of a polar plot are controlled by by set mttics. Please see set mxtics
(p. 199).

gnuplot 5.5 197

Multiplot

The command set multiplot places gnuplot in the multiplot mode, in which several plots are placed next
to each other on the same page or screen window.

Syntax:
set multiplot
{ title <page title> {font <fontspec>} {enhanced|noenhanced} }
{ layout <rows>,<cols>
{rowsfirst|columnsfirst} {downwards|upwards}
{scale <xscale>{,<yscale>}} {offset <xoff>{,<yoff>}}
{margins <left>,<right>,<bottom>,<top>}
{spacing <xspacing>{,<yspacing>}}
}
set multiplot {next|previous}
unset multiplot

For some terminals, no plot is displayed until the command unset multiplot is given, which causes the
entire page to be drawn and then returns gnuplot to its normal single-plot mode. For other terminals, each
separate plot command produces an updated display.

The clear command is used to erase the rectangular area of the page that will be used for the next plot.
This is typically needed to inset a small plot inside a larger plot.

Any labels or arrows that have been defined will be drawn for each plot according to the current size and
origin (unless their coordinates are defined in the screen system). Just about everything else that can be
set is applied to each plot, too. If you want something to appear only once on the page, for instance a
single time stamp, you’ll need to put a set time/unset time pair around one of the plot, splot or replot
commands within the set multiplot/unset multiplot block.

The multiplot title is separate from the individual plot titles, if any. Space is reserved for it at the top of
the page, spanning the full width of the canvas.

The commands set origin and set size must be used to correctly position each plot if no layout is specified
or if fine tuning is desired. See set origin (p. 204) and set size (p. 222) for details of their usage.

Example:
set multiplot
set size 0.4,0.4
set origin 0.1,0.
plot sin(x)
set size 0.2,0.2
set origin 0.5,0.5
plot cos(x)
unset multiplot

1

This displays a plot of cos(x) stacked above a plot of sin(x).

set size and set origin refer to the entire plotting area used for each plot. Please also see set term size
(p- 36). If you want to have the axes themselves line up, you can guarantee that the margins are the same
size with the set margin commands. See set margin (p. 193) for their use. Note that the margin settings
are absolute, in character units, so the appearance of the graph in the remaining space will depend on the
screen size of the display device, e.g., perhaps quite different on a video display and a printer.

With the layout option you can generate simple multiplots without having to give the set size and set
origin commands before each plot: Those are generated automatically, but can be overridden at any time.
With layout the display will be divided by a grid with <rows> rows and <cols> columns. This grid is
filled rows first or columns first depending on whether the corresponding option is given in the multiplot
command. The stack of plots can grow downwards or upwards. Default is rowsfirst and downwards.
The commands set multiplot next and set multiplot previous are relevant only in the context of using

198 gnuplot 5.5

the layout option. next skips the next position in the grid, leaving a blank space. prev returns to the grid
position immediately preceding the most recently plotted position.

Each plot can be scaled by scale and shifted with offset; if the y-values for scale or offset are omitted, the
x-value will be used. unset multiplot will turn off the automatic layout and restore the values of set size
and set origin as they were before set multiplot layout.

Example:
set size 1,1
set origin 0,0
set multiplot layout 3,2 columnsfirst scale 1.1,0.9
[up to 6 plot commands here]
unset multiplot

The above example will produce 6 plots in 2 columns filled top to bottom, left to right. Each plot will have
a horizontal size of 1.1/2 and a vertical size of 0.9/3.

Another possibility is to set uniform margins for all plots in the layout with options layout margins and
spacing, which must be used together. With margins you set the outer margins of the whole multiplot
grid.

spacing gives the gap size between two adjacent subplots, and can also be given in character or screen
units. If a single value is given, it is used for both x and y direction, otherwise two different values can be
selected.

If one value has no unit, the one of the preceding margin setting is used.

Example:
set multiplot layout 2,2 margins 0.1, 0.9, 0.1, 0.9 spacing 0.0

In this case the two left-most subplots will have left boundaries at screen coordinate 0.1, the two right-most
subplots will have right boundaries at screen coordinate 0.9, and so on. Because the spacing between subplots
is given as 0, their inner boundaries will superimpose.

Example:
set multiplot layout 2,2 margins char 5,1,1,2 spacing screen O, char 2

This produces a layout in which the boundary of both left subplots is 5 character widths from the left edge
of the canvas, the right boundary of the right subplots is 1 character width from the canvas edge. The
overall bottom margin is one character height and the overall top margin is 2 character heights. There is
no horizontal gap between the two columns of subplots. The vertical gap between subplots is equal to 2
character heights.

Example:
set multiplot layout 2,2 columnsfirst margins 0.1,0.9,0.1,0.9 spacing 0.1
set ylabel ’ylabel’
plot sin(x)
set xlabel ’xlabel’
plot cos(x)
unset ylabel
unset xlabel
plot sin(2#x)
set xlabel ’xlabel’
plot cos(2*x)
unset multiplot

See also multiplot demo (multiplt.dem)

Mx2tics

Minor tic marks along the x2 (top) axis are controlled by set mx2tics. Please see set mxtics (p. 199).

http://www.gnuplot.info/demo/multiplt.html

gnuplot 5.5 199

Mxtics

Minor tic marks along the x axis are controlled by set mxtics. They can be turned off with unset mxtics.
Similar commands control minor tics along the other axes.

Syntax:
set mxtics <freg>
set mxtics default
set mxtics time <N> <units>
unset mxtics
show mxtics

The same syntax applies to mytics, mztics, mx2tics, my2tics, mrtics, mttics and mcbtics.

<freq> is the number of sub-intervals (NOT the number of minor tic marks) between major tics. The default
for a linear axis is either 2 (one mark) or 5 (four marks) depending on the spacing of the major tics.

default will return the number of minor ticks to its default value.

set mxtics time <IN> <units> applies only when the major tics are set to time mode. See set mxtics
time (p. 199).

If the axis is logarithmic, the number of sub-intervals will be set to a reasonable number by default (based
upon the length of a decade). This will be overridden if <freq> is given. However the usual minor tics (2,
3, ..., 8,9 between 1 and 10, for example) are obtained by setting <freq> to 10, even though there are but
nine sub-intervals.

To set minor tics at arbitrary positions, use the ("<label>" <pos> <level>, ..) form of set
{x|x2|y|y2|z}tics with <label> empty and <level> set to 1.
The set m{x|x2|y|y2|z}tics commands work only when there are uniformly spaced major tics. If all major

tics were placed explicitly by set {x|x2|y|y2|z}tics, then minor tic commands are ignored. Implicit major
tics and explicit minor tics can be combined using set {x|x2|y|y2|z}tics and set {x|x2|y|y2|z}tics add.

Examples:

set xtics 0, 5, 10
set xtics add (7.5)
set mxtics 5

Major tics at 0,5,7.5,10, minor tics at 1,2,3,4,6,7,8,9
set logscale y
set ytics format "'
set ytics le-6, 10, 1
set ytics add ("1" 1, ".1" 0.1, ".01" 0.01, "107-3" 0.001, \
"10°-4" 0.0001)
set mytics 10

Major tics with special formatting, minor tics at log positions

By default, minor tics are off for linear axes and on for logarithmic axes. They inherit the settings for
axis|border and {no}mirror specified for the major tics. Please see set xtics (p. 245) for information
about these.

Mxtics time

Syntax:
set mxtics time <N> {seconds|minutes|hours|days|weeks|months|years}

This is a new command option introduced in gnuplot version 5.5. It places minor tic marks exactly at some
integral number of time units rather than at some fraction of the major tic interval.

200 gnuplot 5.5

The new default is that minor tics are not generated if the major tics are in time mode (set xdata time or
set xtics time).

set mxtics or set mxtics <freq> can restore the pre-version 5.5 behavior but this was always problematic.
For example, automatic subdivision of a 72-year span placed major tics at 12-year intervals and minor tics
at 5-year intervals.

Using set mxtics time 2 years, however, will place a minor tic mark exactly at the start of alternate years.
set mxtics time 1 month will place tic marks exactly at 1 Jan, 1 Feb, 1 Mar, 1 Apr, ... even though those
intervals contain an unequal number of days.

My2tics

Minor tic marks along the y2 (right-hand) axis are controlled by set my2tics. Please see set mxtics
(p. 199).

Mytics

Minor tic marks along the y axis are controlled by set mytics. Please see set mxtics (p. 199).

Mztics

Minor tic marks along the z axis are controlled by set mztics. Please see set mxtics (p. 199).

Nonlinear

Syntax:

set nonlinear <axis> via f(axis) inverse g(axis)
unset nonlinear <axis>

This command is similar to the set link command except that only one of the two linked axes is visible.
The hidden axis remains linear. Coordinates along the visible axis are mapped by applying g(x) to hidden
axis coordinates. f(x) maps the visible axis coordinates back onto the hidden linear axis. You must provide
both the forward and inverse expressions.

To illustrate how this works, consider the case of a log-scale x2 axis.

set x2ange [1:1000]
set nonlinear x2 via loglO(x) inverse 10%*x

This achieves the same effect as set log x2. The hidden axis in this case has range [0:3], obtained by
calculating [log10(xmin):log10(xmax)].

The transformation functions f() and g() must be defined using a dummy variable appropriate to the nonlinear
axis:

axis: x x2 dummy variable x

axis: y y2 dummy variable y

axis: z cb dummy variable z

axis: r dummy variable r
Example:

set xrange [-3:3]
set nonlinear x via norm(x) inverse invnorm(x)

gnuplot 5.5 201

This example establishes a probability-scaled ("probit") x axis, such that plotting the cumulative normal
function Phi(x) produces a straight line plot against a linear y axis.

Example:

logit(p) = log(p/(1-p))

logistic(a) = 1. / (1. + exp(-a))

set xrange [.001 : .999]

set nonlinear y via logit(y) inverse logistic(y)
plot logit(x)

This example establishes a logit-scaled y axis such that plotting logit(x) on a linear x axis produces a straight
line plot.

Example:
f(x) = (x <= 100) ? x : (x < 500) ? NaN : x-390
g(x) = (x <= 100) ? x : x+390

set xrange [0:1000] noextend

set nonlinear x via f(x) inverse g(x)
set xtics add (100,500)

plot sample [x=1:100] x, [x=500:1000] x

This example creates a "broken axis". X coordinates 0-100 are at the left, X coordinates 500-1000 are at
the right, there is a small gap (10 units) between them. So long as no data points with (100 < x < 500) are
plotted, this works as expected.

Object

The set object command defines a single object which will appear in subsequent plots. You may define as
many objects as you like. Currently the supported object types are rectangle, circle, ellipse, and polygon.
Rectangles inherit a default set of style properties (fill, color, border) from those set by the command set
style rectangle, but each object can also be given individual style properties. Circles, ellipses, and polygons
inherit the fill style from set style fill. Objects to be drawn in 2D plots may be defined in any combination
of axis, graph, polar, or screen coordinates.

Object specifications in 3D plots cannot use graph coordinates. Rectangles and ellipses in 3D plots are
limited to screen coordinates.

Syntax:

set object <index>
<object-type> <object-properties>
{front|back|behind|depthorder}
{cliplnoclip}
{fclfillcolor <colorspec>} {fs <fillstyle>}
{default} {lw|linewidth <width>} {dt|dashtype <dashtype>}
unset object <index>

<object-type> is either rectangle, ellipse, circle, or polygon. Each object type has its own set of
characteristic properties.

The options front, back, behind control whether the object is drawn before or after the plot itself. See
layers (p. 65). Setting front will draw the object in front of all plot elements, but behind any labels that
are also marked front. Setting back will place the object behind all plot curves and labels. Setting behind
will place the object behind everything including the axes and back rectangles, thus

set object rectangle from screen 0,0 to screen 1,1 behind

can be used to provide a colored background for the entire graph or page.

202 gnuplot 5.5

By default, objects are clipped to the graph boundary unless one or more vertices are given in screen
coordinates. Setting noclip will disable clipping to the graph boundary, but will still clip against the screen
size.

The fill color of the object is taken from the <colorspec>. fillcolor may be abbreviated fc. The fill style
is taken from <fillstyle>. See colorspec (p. 62) and fillstyle (p. 226). If the keyword default is given,
these properties are inherited from the default settings at the time a plot is drawn. See set style rectangle
(p. 229).

Rectangle

Syntax:

set object <index> rectangle
{from <position> {tol|rto} <position> |
center <position> size <w>,<h> |
at <position> size <w>,<h>}

The position of the rectangle may be specified by giving the position of two diagonal corners (bottom left
and top right) or by giving the position of the center followed by the width and the height. In either case
the positions may be given in axis, graph, or screen coordinates. See coordinates (p. 37). The options at
and center are synonyms.

Examples:

Force the entire area enclosed by the axes to have background color cyan
set object 1 rect from graph O, graph O to graph 1, graph 1 back
set object 1 rect fc rgb "cyan" fillstyle solid 1.0

Position a red square with lower left at 0,0 and upper right at 2,3
set object 2 rect from 0,0 to 2,3 fc 1t 1

Position an empty rectangle (no fill) with a blue border
set object 3 rect from 0,0 to 2,3 fs empty border rgb "blue"

Return fill and color to the default style but leave vertices unchanged
set object 2 rect default

Rectangle corners specified in screen coordinates may extend beyond the edge of the current graph. Otherwise
the rectangle is clipped to fit in the graph.

Ellipse

Syntax:

set object <index> ellipse {at|center} <position> size <w>,<h>
{angle <orientation>} {units xylxx|yy}
{<other-object-properties>}

The position of the ellipse is specified by giving the center followed by the width and the height (actually
the major and minor axes). The keywords at and center are synonyms. The center position may be given
in axis, graph, or screen coordinates. See coordinates (p. 37). The major and minor axis lengths must
be given in axis coordinates. The orientation of the ellipse is specified by the angle between the horizontal
axis and the major diameter of the ellipse. If no angle is given, the default ellipse orientation will be used
instead (see set style ellipse (p. 229)). The units keyword controls the scaling of the axes of the ellipse.
units xy means that the major axis is interpreted in terms of units along the x axis, while the minor axis in
that of the y axis. units xx means that both axes of the ellipses are scaled in the units of the x axis, while

gnuplot 5.5 203

units yy means that both axes are in units of the y axis. The default is xy or whatever set style ellipse
units was set to.

NB: If the x and y axis scales are not equal, (e.g. units xy is in effect) then the major/minor axis ratio will
no longer be correct after rotation.

Note that set object ellipse size <2r>,<2r> does not in general produce the same result as set object
circle <r>. The circle radius is always interpreted in terms of units along the x axis, and will always
produce a circle even if the x and y axis scales are different and even if the aspect ratio of your plot is not
1. If units is set to xy, then ’set object ellipse’ interprets the first <2r> in terms of x axis units and the
second <2r> in terms of y axis units. This will only produce a circle if the x and y axis scales are identical
and the plot aspect ratio is 1. On the other hand, if units is set to xx or yy, then the diameters specified
in the ’set object’ command will be interpreted in the same units, so the ellipse will have the correct aspect
ratio, and it will maintain its aspect ratio even if the plot is resized.

Circle

Syntax:

set object <index> circle {at|center} <position> size <radius>
{arc [<begin>:<end>]} {no{wedgel}}
{<other-object-properties>}

The position of the circle is specified by giving the position of the center center followed by the radius. The
keywords at and center are synonyms. In 2D plots the position and radius may be given in any coordinate
system. See coordinates (p. 37). Circles in 3D plots cannot use graph coordinates. In all cases the
radius is calculated relative to the horizontal scale of the axis, graph, or canvas. Any disparity between the
horizontal and vertical scaling will be corrected for so that the result is always a circle. If you want to draw
a circle in plot coordinates (such that it will appear as an ellipse if the horizontal and vertical scales are
different), use set object ellipse instead.

By default a full circle is drawn. The optional qualifier arc specifies a starting angle and ending angle, in
degrees, for one arc of the circle. The arc is always drawn counterclockwise.

See also set style circle (p. 229), set object ellipse (p. 202).

Polygon
Syntax:
set object <index> polygon
from <position> to <position> ... {to <position>}
or
from <position> rto <position> ... {rto <position>}

The position of the polygon may be specified by giving the position of a sequence of vertices. These may be
given in any coordinate system. If relative coordinates are used (rto) then the coordinate type must match
that of the previous vertex. See coordinates (p. 37).

Example:

set object 1 polygon from 0,0 to 1,1 to 2,0
set object 1 fc rgb "cyan" fillstyle solid 1.0 border 1t -1

Depthorder The option set object N depthorder applies to 3D polygon objects only. Rather than
assigning the object to layer front/back/behind it is included in the list of pm3d quadrangles sorted and
rendered in order of depth by set pm3d depthorder. As with pm3d surfaces, two-sided coloring can be

204 gnuplot 5.5

generated by specifying the object fillcolor as a linestyle. In this case the ordering of the first three vertices
in the polygon determines the "side".

If you set this property for an object that is not a 3D polygon it probably will not be drawn at all.

Offsets

Autoscaling sets the x and y axis ranges to match the coordinates of the data that is plotted. Offsets
provide a mechanism to expand these ranges to leave empty space between the data and the plot borders.
Autoscaling then further extends each range to reach the next axis tic unless this has been suppressed by
set autoscale noextend or set xrange noextend. See noextend (p. 156). Offsets affect only scaling
for the x1 and y1 axes.

Syntax:

set offsets <left>, <right>, <top>, <bottom>
unset offsets
show offsets

Each offset may be a constant or an expression. Each defaults to 0. By default, the left and right offsets
are given in units of the first x axis, the top and bottom offsets in units of the first y axis. Alternatively,
you may specify the offsets as a fraction of the total graph dimension by using the keyword "graph". Only
"graph" offsets are possible for nonlinear axes.

A positive offset expands the axis range in the specified direction, e.g. a positive bottom offset makes ymin
more negative. Negative offsets interact badly with autoscaling and clipping.

Example:

set autoscale noextend
set offsets graph 0.05, 0, 2, 2
plot sin(x)

This graph of sin(x) will have y range [-3:3] because the function will be autoscaled to [-1:1] and the vertical
offsets add 2 at each end of the range. The x range will be [-11:10] because the default is [-10:10] and it has
been expanded to the left by 0.05 of that total range.

Origin

The set origin command is used to specify the origin of a plotting surface (i.e., the graph and its margins)
on the screen. The coordinates are given in the screen coordinate system (see coordinates (p. 37) for
information about this system).

Syntax:

set origin <x-origin>,<y-origin>

Output

By default, screens are displayed to the standard output. The set output command redirects the display
to the specified file or device.

Syntax:

set output {"<filename>"}
show output

The filename must be enclosed in quotes. If the filename is omitted, any output file opened by a previous
invocation of set output will be closed and new output will be sent to STDOUT. (If you give the command

gnuplot 5.5 205

set output "STDOUT", your output may be sent to a file named "STDOUT"! ["May be", not "will be",
because some terminals, like x11 or wxt, ignore set output.])

When both set terminal and set output are used together, it is safest to give set terminal first, because
some terminals set a flag which is needed in some operating systems. This would be the case, for example,
if the operating system needs a separate open command for binary files.

On platforms that support pipes, it may be useful to pipe terminal output. For instance,

set output "|lpr -Plaser filename"
set term png; set output "|display png:-"

On MSDOS machines, set output "PRN" will direct the output to the default printer. On VMS, output
can be sent directly to any spooled device.

Overflow

Syntax:
set overflow {float | NaN | undefined}
unset overflow

This version of gnuplot supports 64-bit integer arithmetic. This means that for values from 2753 to 2763
(roughly 10°16 to 10~19) integer evaluation preserves more precision than evaluation using IEEE 754 floating
point arithmetic. However unlike the IEEE floating point representation, which sacrifices precision to span a
total range of roughly [-107307 : 10~307], integer operations that result in values outside the range [-2763 :
2°63] overflow. The set overflow command lets you control what happens in case of overflow. See options
below.

set overflow is the same as set overflow float. It causes the result to be returned as a real number rather
than as an integer. This is the default.

The command unset overflow causes integer arithmetic overflow to be ignored. No error is shown. This
may be desirable if your platform allows only 32-bit integer arithmetic and you want to approximate the
behaviour of gnuplot versions prior to 5.4.

The reset command does not affect the state of overflow handling.

Earlier gnuplot versions were limited to 32-bit arithmetic and ignored integer overflow. Note, however, that
some built-in operators did not use integer arithmetic at all, even when given integer arguments. This
included the exponentiation operator N**M and the summation operator (see summation (p. 55)). These
operations now return an integer value when given integer arguments, making them potentially susceptible
to overflow and thus affected by the state of set overflow.

Float

If an integer arithmetic expression overflows the limiting range, [-2°63 : 2°63] for 64-bit integers, the result
is returned as a floating point value instead. This is not treated as an error. Example:

gnuplot> set overflow float

gnuplot> A = 2xx62 - 1; print A, A+A, A+A+A

4611686018427387903 9223372036854775806 1.38350580552822e+19

NaN

If an integer arithmetic expression overflows the limiting range, [-2763 : 2~63] for 64-bit integers, the result
is returned as NaN (Not a Number). This is not treated as an error. Example:

gnuplot> set overflow NaN

gnuplot> print 10%*18, 10%*19

1000000000000000000 NaN

206 gnuplot 5.5

Undefined

If an integer arithmetic expression overflows the limiting range, [-2763 : 2°63] for 64-bit integers, the result
is undefined. This is treated as an error. Example:

gnuplot> set overflow undefined
gnuplot> A = 10%x*19

undefined value

Affected operations

The set overflow state affects the arithmetic operators

+ - x / *x%

and the built-in summation operation sum.

All of these operations will return an integer result if all of the arguments are integers, so long as no overflow
occurs during evaluation.

The set overflow state does not affect logical or bit operations

< >> | T &

If overflow occurs at any point during the course of evaluating of a summation set overflow float will cause
the result to be returned as a real number even if the final sum is within the range of integer representation.

Palette

The palette is a set of colors, usually ordered as one or more stepped gradients, used to color pm3d surfaces,
heat maps, and other plot elements. Colors in the current palette are automatically mapped from plot
coordinate z values or from an extra data column of gray values. The current palette is shown by default
in a separate colorbox drawn next to plots that use plot style pm3d. The colorbox can be customized or
disabled. See set colorbox (p. 164). See also show palette (p. 254) and test palette (p. 264).

Syntax:

set palette
set palette {
{ gray | color }
{ gamma <gamma> }
{ rgbformulae <r>,<g>,
| defined { (<grayl> <colorl> {, <grayN> <colorN>}...) }
| file ’<filename>’ {datafile-modifiers}
| colormap <colormap-name>
| functions <R>,<G>,

cubehelix {start <val>} {cycles <val>} {saturation <val>} }
viridis }

model { RGB | CMY | HSV {start <radians>} } }

positive | negative }

nops_allcF | ps_allcF }

maxcolors <maxcolors> }

N N e e]

}

A palette can be defined in several ways.

gnuplot 5.5 207

- Provide formulae for the red, green, and blue compo- set palette rgbformulae 7,5,15 (this is the default)

nents as a function of the gray value between 0 and 1. | I |

Set palette rgbformulae allows you to choose from
36 predefined formulae. Set palette functions allows set palette defined (0 "white", 1 "dark-red")

you to define your own functions. l TS
- Use set palette defined to specify one or more

smooth gradients, each spanning one segment of the to- set palette cubehelix

tal z range. 0 |

- Load a previously save palette into the current palette.
Set palette file reads a saved palette from a file. Set
palette colormap extracts the RGB components from
a saved colormap.

- Specify a named palette, perhaps with additional parameters to customize. The named palettes currently
provided are cubehelix (a customizable family of palettes) and viridis.

set palette viridis

set palette (without options) restores the default values.

set palette negative inverts the direction of the palette, e.g. set palette viridis negative creates a
gradient from yellow to blue rather than from blue to yellow.

set palette gray switches to a grayscale palette. set palette color restores the most recent color palette.

In pm3d color surfaces the gray value of each small quadrangle is obtained by mapping the averaged z-
coordinate of its 4 corners from the range [min_z,max_z] into the range of grays, which is always [0:1]. The
palette maps that gray value into an RGB color.

Palette colors can be mentioned explicitly in a color specification (see colorspec (p. 62)). This is useful to
assign a palette color to an object or label.

The palette can be defined in any of three color spaces: RGB CMY HSV. See set palette model (p. 211).
All color component values in all color spaces are limited to [0,1].

Rgbformulae
set palette rgbformulae <function 1>, <function 2>, <function 3>

Despite its name, this option applies to all color spaces. You must specify one of 36 preset mapping functions
by number for each color component. The available functions are listed by show palette rgbformulae. The
default is set palette rgbformulae 7,5,15. In RGB space this uses function 7 to map the red component,
function 5 to map the green component, and function 15 to map the blue component. A negative function
number inverts the sense of that component by mapping f(1-gray) rather than f(gray).

Some nice schemes in RGB color space ocean
7,56,15 ... default (black-blue-red-yellow) D 200
3,11,6 ... green-red-violet
23,28,3 ... ocean (green-blue-white) rainbow
21,22,23 ... hot (black-red-yellow-white) . T
30,31,32 ... black-blue-violet-yellow-white
33,13,10 ... rainbow (blue-green-yellow-red) AFM hot
34,35,36 ... AFM hot (black-red-yellow-white) B |

set palette model HSV rgbformulae 3,2,2

| I

A full color palette in HSV color space

3,2,2 ... red-yellow—-green-cyan-blue-magenta-red

Defined

Gray-to-rgb mapping can be manually set by use of palette defined: A color gradient is defined and used
to give the rgh values. Such a gradient is a piecewise linear mapping from gray values in [0,1] to the RGB

208 gnuplot 5.5

space [0,1]x[0,1]x[0,1]. You must specify the gray values and the corresponding RGB values between which
linear interpolation will be done.

Syntax:
set palette defined { (<grayl> <colorl> {, <grayN> <colorN>}...) }

<grayX> are gray values which are mapped to [0,1] and <colorX> are the corresponding rgh colors. The
color can be specified in three different ways:

<color> := { <r> <g> | ’<color-name>’ | ’#rrggbb’ }

Either by three numbers (each in [0,1]) for red, green and blue, separated by whitespace, or the name of the
color in quotes or X style color specifiers also in quotes. You may freely mix the three types in a gradient
definition, but the named color "red" will be something strange if RGB is not selected as color space. Use
show colornames for a list of known color names.

The <gray> values must form an ascending sequence of real numbers; the sequence will be automatically
rescaled to [0,1].

set palette defined (without a gradient definition in braces) switches to RGB color space and uses a preset
full-spectrum color gradient. Use show palette gradient to display the gradient.

Examples:

To produce a gray palette (useless but instructive) use:
set palette model RGB
set palette defined (0 "black", 1 "white")

To produce a blue-to-yellow-to-red palette use (all equivalent):
set palette defined (0 "blue", 1 "yellow", 2 "red")
set palette defined (0001, 1110, 2100)
set palette defined (O "#0000ff", 1 "#ffff0O0", 2 "#£f£0000")

Full color spectrum within HSV color space:
set palette model HSV
set palette defined (0 O
set palette defined (0 O

)

11,1
1 1 , 60.8333 11, 7 0.8333 0 1)

1 111

0, 011

Full color HSV spectrum wrapping at some hue other than red
set palette model HSV start 0.15

set palette defined (00 11, 1 111)

To produce a palette with only a few, equally-spaced colors:
set palette model RGB maxcolors 4
set palette defined (O "yellow", 1 "red")

"Traffic light’ palette (non-smooth color jumps at gray = 1/3 and 2/3).
set palette model RGB
set palette defined (0 "dark-green", 1 "green", \
1 "yellow", 2 "dark-yellow", \
2 "red", 3 "dark-red")

Functions
set palette functions <fl(gray)>, <f2(gray)>, <f3(gray)>

This option is like set palette rgbformulae except that you must provide an actual function for each color
component rather than the index of a preset function. The dummy parameter of each function, if any, must
be "gray". The function must map gray values in [0,1] to output values also in [0,1].

Examples:

To produce a full color palette use:

gnuplot 5.5 209

set palette model HSV functiomns gray, 1, 1

A nice black to gold palette:
set palette model RGB functions 1.1*gray**0.25, gray**0.75, O

A gamma-corrected black and white palette
gamma = 2.2
map(gray) = gray**(1l./gamma)
set palette model RGB functions map(gray), map(gray), map(gray)

Gray

set palette gray switches to a grayscale palette shading from 0.0 = black to 1.0 = white. set palette
color is an easy way to switch back from the gray palette to the last color mapping.

Cubehelix

The "cubehelix" option defines a family of palettes in which color (hue) varies around the standard color
wheel while the net perceived intensity increases monotonically as the gray value goes from 0 to 1.

D A Green (2011) http://arxiv.org/abs/1108.5083

start defines the starting point along the color wheel in radians. cycles defines how many color wheel cycles
span the palette range. Larger values of saturation produce more saturated color; saturation > 1 may lead
to clipping of the individual RGB components and to intensity becoming non-monotonic. The palette is also
affected by set palette gamma. The default values are

set palette cubehelix start 0.5 cycles -1.5 saturation 1
set palette gamma 1.5

Viridis
set palette viridis

The "viridis" palette is a (blue->yellow) gradient designed to accommodate users with impaired color vision.
Viridis was developed by Stéfan van der Walt and Nathaniel Smith. It features an approximately linear
gradient of perceived brightness (luminance). The colormap version used in gnuplot is based on

"Viridis - Colorblind-Friendly Color Maps for R", Garnier et al (2021)
https://CRAN.R-project.org/package=viridis

Colormap

set palette colormap <name> loads a defined gradient that was previously saved to a colormap. Alpha
channel information in the colormap, if any, will be lost when the color values are copied into the palette
definition. See colormap (p. 159).

File

set palette file is basically a set palette defined (<gradient>) where <gradient> is read from a datafile
or datablock. The color values may be provided either as a single 24-bit packed RGB integer (1 or 2 using
columns) or as three separate fractional R, G, B components (3 or 4 using columns). If no explicit gray
value is provided in the first input column, the line number is used; this generates equal spacing along the
color axis.

210 gnuplot 5.5

The file is read as a normal data file, so all datafile modifiers can be used. Please note that R might actually
be H if HSV color space is selected.

Use show palette gradient to display the gradient.
Examples:
Read in a palette of RGB triples each in range [0,255]:
set palette file ’some-palette’ using ($1/255):($2/255):($3/255)

Equidistant rainbow (blue-green-yellow-red) palette:

set palette model RGB file "-" using 1:2:3

o ~ ~ OO
O = = O
O O O

Same thing using explicit gray intervals and packed RGB values:

set palette model RGB file "-" using 1:2
1 0x0000ff

2 0x00££00

3 0xffff00

4 0xff£0000

e

Binary palette files are supported as well, see binary general (p. 126). Example: put 64 triplets of R,G,B
doubles into file palette.bin and load it by

set palette file "palette.bin" binary record=64 using 1:2:3

Gamma correction

Automatic gamma correction via set palette gamma <gamma> can be done for gray maps (set palette
gray) and for the cubehelix color palette schemes. Gamma = 1 produces a linear ramp of intensity. See
test palette (p. 264).

For gray mappings, <gamma> defaults to 1.5 which is usually suitable.

The gamma correction is applied to the cubehelix color palette family, but not to other palette coloring
schemes. However, you may easily implement gamma correction for explicit color functions.

Example:
set palette model RGB
set palette functions gray**0.64, gray**0.67, gray**0.70

To use gamma correction with interpolated gradients specify intermediate gray values with appropriate
colors. Instead of

set palette defined (0000, 111 1)

use e.g.

set palette defined (0 0 0 0, 0.5 .73 .73 .73, 1 11 1)

or even more intermediate points until the linear interpolation fits the "gamma corrected" interpolation well
enough.

gnuplot 5.5 211

Maxcolors

set palette maxcolors <IN> limits the palette to N discrete colors selected from a continuous palette
sampled at equally spaced intervals. If you want unequal spacing of N discrete colors, use set palette
defined instead of a single continuous palette.

The primary use for this is to generate heat maps with discrete colors, each representing a range of values.

A second use is to handle terminals that support only a limited number of colors (e.g. 256 colors in gif or
sixel). The default gnuplot linetype colors use up some of these, further limiting the number available for
palette use. Thus a multiplot using multiple palettes could fail because the first palette has used all the
available color positions. You can mitigate this by restricting the number of colors used by each palette.

Color model
set palette model { RGB | CMY | HSV {start <radians>} }

Sometimes RGB color space is not the most convenient color space to work in. You may change the color
space model to one of RGB, HSV, CMY. RGB stands for Red, Green, Blue; CMY stands for Cyan,
Magenta, Yellow; HSV stands for Hue, Saturation, Value. In HSV space the full color wheel is traversed as
H runs from 0 to 1, so H=0 and H=1 describe the same color. By default the cycle starts and ends at red.
The optional parameter start introduces an offset, so after set palette model HSV start 0.3 H=0 and
H=1 both correspond to green.

For more information on color models see: http://en.wikipedia.org/wiki/Color_space

Documentation for palette options was written for RGB color space, so please note that R really means
"first color component", which can be H or C depending on the actual color space in use.

Postscript

This section is only relevant to output from set term postscript color. When the palette is defined using
set palette rgbformulae, gnuplot writes a postscript implementation of the required analytical formulae
as a header just before a pm3d drawing (see /g and /cF definitions). Usually, it makes sense to write
definitions of only the 3 formulae used in the palette. This is the default option nops_allcF. The option
ps_allcF instead writes definitions of all 36 formulae. This allows you to edit the postscript file in order to
have different palettes for different surfaces in one graph.

If you write a pm3d surface to a postscript file, it may be possible to reduce the file size by running the awk
script pm3dCompress.awk afterward. If the data lies on a rectangular grid, even greater compression may
be possible using the awk script pm3dConvertTolmage.awk. Both scripts are distributed with gnuplot.
Usage:

awk -f pm3dCompress.awk thefile.ps >smallerfile.ps
awk -f pm3dConvertTolImage.awk thefile.ps >smallerfile.ps

Parametric

The set parametric command changes the meaning of plot (splot) from normal functions to parametric
functions. The command unset parametric restores the plotting style to normal, single-valued expression
plotting.

Syntax:

set parametric
unset parametric
show parametric

http://en.wikipedia.org/wiki/Color_space

212 gnuplot 5.5

For 2D plotting, a parametric function is determined by a pair of parametric functions operating on a
parameter. An example of a 2D parametric function would be plot sin(t),cos(t), which draws a circle (if
the aspect ratio is set correctly — see set size (p. 222)). gnuplot will display an error message if both
functions are not provided for a parametric plot.

For 3D plotting, the surface is described as x=f(u,v), y=g(u,v), z=h(u,v). Therefore a triplet of functions is
required. An example of a 3D parametric function would be cos(u)*cos(v),cos(u)*sin(v),sin(u), which
draws a sphere. gnuplot will display an error message if all three functions are not provided for a parametric
splot.

The total set of possible plots is a superset of the simple f(x) style plots, since the two functions can describe
the x and y values to be computed separately. In fact, plots of the type t,f(t) are equivalent to those produced
with f(x) because the x values are computed using the identity function. Similarly, 3D plots of the type
u,v,f(u,v) are equivalent to f(x,y).

Note that the order the parametric functions are specified is xfunction, yfunction (and zfunction) and that
each operates over the common parametric domain.

Also, the set parametric function implies a new range of values. Whereas the normal f(x) and f(x,y) style
plotting assume an xrange and yrange (and zrange), the parametric mode additionally specifies a trange,
urange, and vrange. These ranges may be set directly with set trange, set urange, and set vrange, or
by specifying the range on the plot or splot commands. Currently the default range for these parametric
variables is [-5:5]. Setting the ranges to something more meaningful is expected.

Paxis

Syntax:

set paxis <axisno> {range <range-options> | tics <tic-options>}
set paxis <axisno> label <label-options> { offset <radial-offset> }
show paxis <axisno> {range | tics}

The set paxis command is equivalent to the set xrange and set xtics commands except that it acts on
one of the axes pl, p2, ... used in parallel axis plots and spiderplots. See parallelaxes (p. 95), set xrange
(p- 243), and set xtics (p. 245). The normal options to the range and tics commands are accepted
although not all options make sense for parallel axis plots.

set paxis <axisno> label <label-options> is relevant to spiderplots but ignored otherwise. Axes of a
parallel axis plot can be labeled using the title option of the plot command, which generates an xtic label.
Note that this may require also set xtics.

The axis linetype properties are controlled using set style parallelaxis (p. 230).

Pixmap

Syntax:

set pixmap <index> {"filename" | colormap <name>}
at <position>
{width <w> | height <h> | size <w>,<h>}
{front |back|behind} {center}

show pixmaps

unset pixmaps

unset pixmap <index>

The set pixmap command is similar to set object in that it defines an object that will appear on subsequent
plots. The rectangular array of red/green/blue/alpha values making up the pixmap are read from a png,
jpeg, or gif file. The position and ext